Vol. 8, No 19, p. 947-956 - 31 ago. 2021
Padrões de distribuição geográfica de Passiflora L. subg. Decaloba (DC.) Rchb. (Passifloraceae s.s.)
Natália Brandão Gonçalves Fernandes e Michaele Alvim Milward-de-Azevedo
Resumo
A distribuição geográfica de espécies vegetais, tem sido foco de vários estudos ao longo do tempo, principalmente para determinação de padrões de distribuição que caracterizem a área de preferência das espécies. A Família Passifloraceae sensu stricto possui desde espécies de ampla distribuição, até táxons muito restritos. O subgênero Decaloba, pertencente ao gênero Passiflora, possui distribuição tropical e subtropical e abrange cerca de 235 espécies, divididas em oito superseções. Foram levantados os dados de ocorrência das espécies do subgênero Decaloba nos sítios eletrônicos dos herbários virtuais. A plotagem dos mapas foi realizada com auxílio do SimpleMappr. A maior parte das espécies ocorre na América Central e do Sul, enquanto uma pequena parte dividiu-se entre a Ásia e Oceania, em diferentes padrões biogeográficos.
Palavras-chave
Biogeografia; Neotrópico; Centro de dispersão.
Abstract
Patterns of geographic distribution of Passiflora L. subg. Decaloba (DC.)
Rchb. (Passifloraceae s.s.). Geographic distribution of plant species has been the focus
of several studies over time, mainly to determine distribution patterns that characterize
the species' preferred area. The Family Passifloraceae sensu stricto ranges from
widely distributed species to very restricted taxa. The subgenus Decaloba, belonging
to the genus Passiflora, has a tropical and subtropical distribution and covers about
235 species, divided into eight supersections. Data on the occurrence of species of the
subgenus Decaloba were collected on the websites of virtual herbariums. The plotting
of the maps was carried out with the aid of SimpleMappr. Most species occur in Central
and South America, while a small part was divided between Asia and Oceania, in different
biogeographic patterns.
Keywords
Biogeography; Neotropics; Center of dispersion.
DOI
10.21438/rbgas(2021)081921
Texto completo
PDF
Referências
Barreto, F. C. C. Potential distribution modelling as a tool to conservation: Algorithms
selection and evaluation and application with Heliconius nattereri Felder, 1865 (Nymphalidae:
Heliconiinae). Viçosa: Universidade Federal de Viçosa, 2008. (Tese de doutorado).
Bernacci, L. C.; Nunes, T. S.; Mezzonato, A. C.; Milward-de-Azevedo, M. A.; Imig, D. C.; Cervi, A. C.
Passifloraceae. In: Flora do Brasil 2020. Rio de Janeiro: Jardim Botânico do Rio de
Janeiro, 2020. Disponível em: <http://floradobrasil.jbrj.gov.br>.
Acesso em: 12 jan. 2021.
Brown, J. H. Species diversity. In: Myers A. A.; Giller, P. S. (Eds.). Analytical biogeography.
London: Chapman and Hall, 1988. p. 57-89.
Brown, J. H.; Lomolino, M. V. Biogeografia. Ribeirão Preto: FUNPEC, 2006.
Chen, D.; Chen, H. W. Using the Köppen classification to quantify climate variation and change:
An example for 1901-2010. Environmental Development, v. 6, p. 69-79, 2013. https://doi.org/10.1016/j.envdev.2013.03.007
Clausing, G.; Renner, S. S. Molecular phylogenetics of Melastomataceae and Memecylaceae: Implications
for character evolution. American Journal of Botany, v. 88, n. 3, p. 486-498, 2001.
https://doi.org/10.2307/2657114
Collevatti, R. G.; Rabelo, S. G.; Vieira, R. F. Phylogeography and disjunct a distribution in
Lychnophora ericoides (Asteraceae), an endangered Cerrado shrub species. Annals of
Botany, v. 104, p. 655-664, 2009. https://doi.org/10.2307/2657114
Hawkins, B. A.; Porter, E. E.; Diniz-Filho, J. A. F. Productivity and history as predictors
of the latitudinal diversity gradient of terrestrial birds. Ecology, v. 84, n. 6,
p. 1608-1623, 2003. https://doi.org/10.1890/0012-9658(2003)084[1608:PAHAPO]2.0.CO;2
Knapp, M.; Stöckler, K.; Havell, D.; Delsuc, F.; Sebastiani, F. Relaxed molecular clock
provides evidence for long-distance dispersal of Nothofagus (Southern Beech). PLoS
Biology, v. 3, n. 1, e14, 2005. https://doi.org/10.1371/journal.pbio.0030014
Krosnick, S. E. Phylogenetic relationships and patterns of morphological evolution in the
Old World species of Passiflora (subgenus Decaloba: Supersection Disemma
and subgenus Tetrapathea). Columbus: The Ohio State University, 2006. (Ph.D.
dissertation).
Krosnick, S. E.; Freudenstein, J. V. Monophyly and floral character homology of Old World
Passiflora (Subgenus Decaloba: Supersection Disemma). Systematic
Botany, v. 30, n. 1, p. 139-152, 2005. https://doi.org/10.1590/1678-4685-GMB-2016-0042
Krosnick, S. E.; Porter-Utley, K. E.; MacDougal, J. M.; Jorgensen, P. M.; McDade, L. A. New
insights into the evolution of Passiflora subgenus Decaloba (Passifloraceae):
Phylogenetic relationships and morphological synapomorphies. Systematic Botany,
v. 38, p. 692-713, 2013. https://doi.org/10.1600/036364413X670359
MacArthur, R. H.; Wilson, E. O. The Theory of Island Biogeography. Princeton: Princeton
University Press, 1967.
MacDougal, J. M.; Feuillet, C. Systematics. In: Ulmer, T.; MacDougal, J. M. (Eds.) Passiflora:
Passionflowers of the World. 1. ed. Portland, Oregon: Timber Press, 2004. p. 27-31.
Marchioretto, M. S.; Miotto, S. T. S.; Siqueira, J. C. Padrões de distribuição
geográfica das espécies brasileiras de Pfaffia (Amaranthaceae).
Rodriguésia, v. 60, n. 3, p. 667-681, 2009. https://doi.org/10.1590/2175-7860200960312
Milward-de-Azevedo, M. A. Análise da valoração dos impactos ambientais
e da demanda de fitoterápicos oriundos do maracujá no Brasil. Revista FAE,
v. 11, p. 19-32, 2008.
Milward-de-Azevedo, M. A.; Baumgratz, J. F. A.; Gonçalves-Esteves, V. A taxonomic
revision of Passiflora subgenus Decaloba (Passifloraceae) in Brazil.
Phytotaxa, v. 53, p. 1-68, 2012. https://doi.org/10.11646/phytotaxa.53.1.1
Muschner, V. C.; Zamberlan, P. M.; Bonatto, S. L.; Freitas, L. B. Phylogeny, biogeography
and divergence times in Passiflora (Passifloraceae). Genetics and Molecular
Biology, v. 35, n. 4, p. 1036-1043, 2012. https://doi.org/10.11646/phytotaxa.53.1.1
Renner, S. S.; Murray, D.; Foreman, D. Timing transantarctic disjunctions in the
Atherospermataceae (Laurales): Evidence from coding and noncoding chloroplast
sequences. Systematic Biology, v. 49, p. 579-591, 2000.
https://doi.org/10.1080/10635159950127402
Richardson, J. E.; Chatrou, L. W.; Mols, J. B.; Erkens, R. H. J.; Pirie, M. D. Historical
biogeography of two cosmopolitan families of flowering plants: Annonaceae and Rhamnaceae.
Philosophical Transactions of the Royal Society B, v. 359, p. 1495-1508, 2004.
https://doi.org/10.1098/rstb.2004.1537
Sanmartín, I.; Ronquist, F. Southern hemisphere biogeography inferred by
event-based models: Plant versus animal patterns. Systematic Biology,
v. 53, p. 216-43, 2004. https://doi.org/10.1080/10635150490423430<
Shorthouse, D. P. SimpleMappr, an online tool to produce publication-quality point maps.
2010. Disponível em: <https://www.simplemappr.net/>.
Acesso em: 12 jan. 2021.
Swenson, U.; Bremer, K. Patterns of floral evolution of four Asteraceae genera
(Senecioneae-Blennospermatinae) and the origin of white flowers in New Zealand.
Systematic Biology, v. 46, p. 407-425, 1997. https://doi.org/10.2307/2413689
Thorne, R. Plant disjunctions: A personal reflection. International Journal
of Plant Sciences, v. 165, p. 137-138, 2004. https://doi.org/10.1093/sysbio/46.3.407
Ulmer, T.; MacDougal, J. M. Passiflora: Passionflowers of the World.
Portland Oregon: Timber Press, 2004.
Varassin, I. G.; Trigo, J. R.; Sazima, M. The role of nectar production, flower
pigments and odour in the pollination of four species of Passiflora
(Passifloraceae) in South-Eastern Brazil. Botanical Journal of the Linnean
Society, v. 136, p. 139-152, 2001. https://doi.org/10.1111/j.1095-8339.2001.tb00563.x
Winkworth, R.; Wagstaff, S.; Glenny, D.; Lockhart, P. Plant dispersal N.E.W.S.
from New Zealand. Trends in Ecology & Evolution, v. 17, p. 514-520,
2002. https://doi.org/10.1016/S0169-5347(02)02590-9
ISSN 2359-1412