Revista Brasileira de Gestao Ambiental e Sustentabilidade (ISSN 2359-1412)
Bookmark this page

Home > Edições Anteriores > v. 8, n. 18 (2021) > Souza

 

Vol. 8, No 18, p. 181-194 - 30 abr. 2021

 

Biotechnology for the mitigation of plastic wastefrom the oceans



Edson Barbosa Souza , Angela Machado Rocha e Marcelo Santana Silva

Abstract
In contemporary times, the term "plastic" represents a family of polymers that are synthetically developed and have the property of being deformed without breaking. Since the beginning of its manufacturing at industrial levels, the amount of the world's plastic production has already risen over 20,000%. Most of the produced plastic ends up having the sea as the end destination and it is known that there are toxic compounds associated with its decomposition that can cause serious problems to the ecosystem and to marine fauna. Biotechnology, as an area of study that integrates several areas of science, is committing to develop methods that may be useful in reversing the impacts that improper disposal of plastic can cause in the environment. The development of biodegradable materials and faster degradation tests with selected microorganisms have been the most effective biotechnological techniques, although they do not yet have a major impact on existing pollution mitigation. This paper will discuss the current accumulation of plastic in the oceans, as well as some of the biotechnological alternatives adopted to reverse the amount of plastic material discarded annually which ends up in the sea.


Keywords
Biotechnology; Pollution; Plastic waste; Mitigation; Oceans.

Resumo
Biotecnologia para a mitigação de resíduos plásticos dos oceanos. Nos tempos contemporâneos, o termo "plástico" representa uma família de polímeros que são sinteticamente desenvolvidos e têm a propriedade de serem deformados sem quebrar. Desde o início de sua fabricação em níveis industriais, os números da produção de plásticos pelo mundo já subiram mais de 20.000%. Boa parte dos plásticos produzidos acabam tendo o mar como destino final e sabe-se que existem compostos tóxicos associados à sua decomposição que podem causar sérios problemas ao ecossistema e seus indivíduos. A biotecnologia, como ciência que integra diversas áreas das ciências, tem se proposto a desenvolver métodos que possam ser úteis na reversão dos impactos que o descarte indevido de plástico pode causar no meio ambiente. Desenvolvimento de materiais biodegradáveis e testes de degradação mais rápidos com auxílio de microrganismos selecionados têm sido as técnicas biotecnológicas mais eficazes, apesar de ainda não apresentarem grande impacto na mitigação da poluição já existente. Esse trabalho propõe-se a discutir o atual acúmulo de plástico nos oceanos, bem como algumas das alternativas biotecnológicas adotadas para reverter a quantidade de materiais plásticos anualmente descartada nos mares.


Palavras-chave
Biotecnologia; Poluição; Resíduos plásticos; Mitigação; Oceanos.

DOI
10.21438/rbgas(2021)081811

Full text
PDF

References
ABIPLAST - Associação Brasileira da Indústria do Plástico. 2015. Profile. Brazilian Plastic Material Transformation Industry. 2015.

ABRELPE - Associação Brasileira de Empresas de Limpeza Pública e de Resíduos Especiais. Panorama of solid waste in Brazil 2014. São Paulo: ABRELPE, 2015.

Arthur, C.; Baker, J. E.; Bamford, H. A. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris. Tacoma, WA, USA: University of Washington Tacoma, 2009.

Bakir, A.; Rowland, S. J.; Thompson, R. C. Competitive sorption of persistent organic pollutants onto microplastics in the marine environment. Marine Pollution Bulletin, v. 64, n. 12, p. 2782-2789, 2012. https://doi.org/10.1016/j.marpolbul.2012.09.010

Bendell, L. I. Favored use of anti-predator netting (APN) applied for the farming of clams leads to little benefits to industry while increasing nearshore impacts and plastics pollution. Marine Pollution Bulletin, v. 91, n. 1, p. 22-28, 2015. https://doi.org/10.1016/j.marpolbul.2014.12.043

Bombelli, P.; Howe, C. J.; Bertocchini, F. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Current Biology, v. 27, n. 8, p. R292-R293, 2017. https://doi.org/10.1016/j.cub.2017.02.060

Brasil. Manual de gerenciamento integrado de resíduos sólidos. Rio de Janeiro: IBAM, 2001.

Brydson, J. Plastic materials. Oxford: Butterworth-Heinemann, 1999.

Cacciari, I.; Quatrini, P.; Zirletta, G.; Mincione, E.; Vinciguerra, V.; Lupattelli, P.; Giovannozzi Sermanni, G. Isotactic polypropylene biodegradation by a microbial community: Physicochemical characterization of metabolites produced. Applied and Environmental Microbiology, v. 59, n. 11, p. 3695-3700, 1993.

Crawford, C. B.; Quinn, B. The emergence of plastics. In: Crawford, C. B.; Quinn, B. Microplastic pollutants. Amsterdam: Elsevier, 2017.

Croxall, J. P.; Butchart, S. H. M.; Lascelles, B.; Stattersfield, A. J.; Sullivan, B.; Symes, A.; Taylor, P. Seabird conservation status, threats and priority actions: A global assessment. Bird Conservation International, v. 22, n. 1, p. 1-34, 2012. https://doi.org/10.1017/S0959270912000020

Derraik, J. G. B. The pollution of the marine environment by plastic debris: A review. Marine Pollution Bulletin, v. 44, n. 9, p. 842-852 2002. https://doi.org/10.1016/S0025-326X(02)00220-5

EMF - Ellen MacArthur Foundation. The new plastics economy: Rethinking the future of plastics. World Economic Forum: Ellen MacArthur Foundation, 2016. Disponível em: <https://www.ellenmacarthurfoundation.org/publications/the-new-plastics-economy-rethinking-the-future-of-plastics>. Access on: Jan. 10, 2020.

Eriksen, M.; Lebreton, L. C. M.; Carson, H. S.; Thiel, M.; Moore, C. J.; Borerro, J. C.; Galgani, F.; Ryan, P. G.; Reisser, J. Plastic pollution in the world's oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE, v. 9, n. 12, p. 1-15, 2014. https://doi.org/10.1371/journal.pone.0111913

Freinkel, S. Plastic: A toxic love story. Boston: Houghton Mifflin Harcourt, 2011.

Gaylarde, C. C.; Bellinaso, M. D. L.; Manfio, G. P. Bioremediation: Biological and technical aspects of xenobiotic bioremediation. Biotechnology Science and Development, n. 34, p. 36-43, 2005.

GEF - Global Environment Facility. Impacts of marine debris on biodiversity: Current status and potential solutions. Montreal: Secretariat of the Convention on Biological Diversity and the Scientific and Technical Advisory Panel, 2012.

Geyer, R.; Jambeck, J. R.; Law, K. L. Production, use, and fate of all plastics ever made. Science Advances, v. 3, n. 7, p. 25-29, 2017. https://doi.org/10.1126/sciadv.1700782

Hadad, D.; Geresh, S.; Sivan, A. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied Microbiology, v. 98, n. 5, p. 1093-1100, 2005. https://doi.org/10.1111/j.1365-2672.2005.02553.x

Hamad, K.; Kaseem, M.; Yang, H. W.; Deri, F.; Ko, Y. Properties and medical applications of polylactic acid: A review. Express Polymer Letters, v. 9, n. 5, p. 435-455, 2015.

Hirai, H.; Takada, H.; Ogata, Y.; Yamashita, R.; Mizukawa, K.; Saha, M.; Kwan, C.; Moore, C.; Gray, H.; Laursen, D.; Zettler, E. R.; Farrington, J. W.; Reddy, C. M.; Peacock, E. E.; Ward, M. C. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Marine Pollution Bulletin, v. 62, n. 8, p. 1683-1692, 2011. https://doi.org/10.1016/j.marpolbul.2011.06.004

Hlihor, R. M.; Gavrilescu, M.; Tavares, T.; Favier, L.; Olivieri, G. Bioremediation: An overview on current practices, advances, and new perspectives in environmental pollution treatment. BioMed Research International, v. 2017, Article ID 6327610, 2017. https://doi.org/10.1155/2017/6327610

Hosler, D.; Burkett, S. L.; Tarkanian, M. J. Prehistoric polymers: Rubber processing in ancient mesoamerica. Science, v. 284, n. 5422, p. 1988-1991, 1999. https://doi.org/ 10.1126/science.284.5422.1988

Ichida, M. C.; Patta, C. A.; Morrone, L. C. Occupational risks of a plastic packaging company. Revista Brasileira de Medicina do Trabalho, v. 7, p. 20-25, 2009.

Jambeck, J. R.; Geyer, R.; Wilcox, C.; Siegler, T. R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K. L. Plastic waste inputs from land into the ocean. Science, v. 342, n. 6223, p. 768-771, 2015. https://doi.org/10.1126/science.1260352

Kinloch, A. J.; Young, R. J. Fracture behavior of polymers. New York: Chapman & Hall, 1995.

Kleeberg, I.; Hetz, C.; Kroppenstedt, R. M.; Müller, R. J.; Deckwer, W. D. Biodegradation of aliphatic-aromatic copolyesters by Thermomonospora fusca and other thermophilic compost isolates. Applied and Environmental Microbiology, v. 64, n. 5, p. 1731-1735, 1998. https://doi.org/10.1128/AEM.64.5.1731-1735.1998

Laglbauer, B. J. L.; Franco-Santos, R. M.; Andreu-Cazenave, M.; Brunelli, L.; Papadatou, M.; Palatinus, A.; Grego, M.; Deprez, T. Macrodebris and microplastics from beaches in Slovenia. Marine Pollution Bulletin, v. 89, n. 1/2, p. 356-366, 2014. https://doi.org/10.1016/j.marpolbul.2014.09.036

Muenmee, S.; Chiemchaisri, W.; Chiemchaisri, C. Microbial consortium involving biological methane oxidation in relation to the biodegradation of waste plastics in solid waste disposal open dump site. International Biodeterioration and Biodegradation, v. 102, p. 172-181, 2015. https://doi.org/10.1016/j.ibiod.2015.03.015

Mulder, K.; Knot, M. PVC plastic: A history of systems development and entrenchment. Technology in Society, v. 23, n. 2, p. 265-286, 2001. https://doi.org/10.1016/S0160-791X(01)00013-6

Nuelle, M. T.; Dekiff, J. H.; Remy, D.; Friesa, E. A new analytical approach for monitoring microplastics in marine sediments. Environmental Pollution, v. 184, p. 161-169, 2014. https://doi.org/10.1016/j.envpol.2013.07.027

OECD - Organisation for Economic Co-operation and Development. Définition statistique de la biotechnologie. L'Organization de Coopérationet de Développement Économiques. On-line: OECD, 2005. Available from: <http://www.oecd.org/fr/sti/biotech/definitionstatistiquedelabiotechnologiemiseajouren2005.htm>. Access on: Jan. 10, 2020.

Pathak, S.; Sneha, C.; Mathew, B. B. Bioplastics: Its timeline based scenario & challenges. Journal of Polymer and Biopolymer Physics Chemistry, v. 2, n. 4, p. 84-90, 2014. https://doi.org/10.12691/jpbpc-2-4-5

Plasticseurope. Plastics: The facts 2014/2015 - An analysis of European plastics production, demand and waste data. PlasticsEurope, 2015. p. 1-34.

Plasticseurope. Plastics: The facts, 2016.

Rochman, C. M.; Browne, M. A.; Halpern, B. S.; Hentschel, B. T.; Hoh, E.; Karapanagioti, H. K.; Rios-Mendoza, L. M.; Takada, H.; The, S.; Thompson, R. C. Policy: Classify plastic waste as hazardous. Nature, v. 494, n. 7436, p. 169-179, 2013. https://doi.org/10.1038/494169a

Rosato, D. V.; Rosato, M. G. Concise encyclopedia of plastics. Norwell, Massachusetts: Kluwer Academic Publishers, 1999.

Ryan, P. G. The effects of ingested plastic on seabirds: Correlations between plastic load and body condition. Environmental Pollution, v. 46, n. 2, p. 119-125, 1987. https://doi.org/10.1016/0269-7491(87)90197-7

Shashoua, Y. Conservation of plastics: Materials science, degradation and preservation. Burlington: Butterworth-Heinemann, 2008.

Shen, L.; Haufe, J.; Patel, M. K. Product overview and market projection of emerging bio-based plastics. PRO-BIP 2009. Report for European polysaccharide network of excellence (EPNOE) and European bioplastics, 2009. v. 243.

Steffen, W.; Grinevald, J.; Crutzen, P.; McNeill, J. The Anthropocene: Conceptual and historical perspectives. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, v. 369, n. 1938, p. 842-867, 2011. https://doi.org/10.1098/rsta.2010.0327

Ter Halle, A.; Ladirat, L.; Martignac, M.; Mingotaud, A. F.; Boyron, O.; Perez, E. To what extent are microplastics from the open ocean weathered? Environmental Pollution, v. 227, p. 167-174, 2017. https://doi.org/10.1016/j.envpol.2017.04.051

UNEP - United Nations Environment Programme. Marine plastic debris and microplastics: Global lessons and research to inspire action and guide policy change. Nairobi: UNEP, 2016.

Utracki, L. A. History of commercial polymer alloys and blends (from a perspective of the patent literature). Polymer Engineering & Science, v. 35, n. 1, p. 2-17, 1995. https://doi.org/10.1002/pen.760350103

Waller, C. L.; Griffiths, H. J.; Waluda, C. M.; Thorpe, S. E.; Loaiza, I.; Moreno, C.; Pacherres, C. O.; Hughes, K. A. Microplastics in the Antarctic marine system: An emerging area of research. Science of the Total Environment, v. 598, p. 220-227, 2017. https://doi.org/10.1016/j.scitotenv.2017.03.283

Wilcox, C.; Van Sebille, E.; Hardesty, B. D. Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proceedings of the National Academy of Sciences, v. 112, n. 38, p. 11899-11904, 2015. https://doi.org/10.1073/pnas.1502108112

Woodruff, M. A.; Hutmacher, D. W. The return of a forgotten polymer: Polycaprolactone in the 21st century. Progress in Polymer Science, v. 35, n. 10, p. 1217-1256, 2010. https://doi.org/10.1016/j.progpolymsci.2010.04.002

Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. A bacterium that degrades and assimilates poly (ethylene terephthalate). Science, v. 351, n. 6278, p. 1196-1199, 2016. https://doi.org/10.1126/science.aad6359


 

ISSN 2359-1412