Vol. 9, No 22, p. 777-793 - 31 ago. 2022
Diferentes percepções de sustentabilidade com base nos sistemas de certificaçã de edifícios: uma revisão
Gustavo Henrique Bruno Polli e Ana Margarida Vaz Duarte Oliveira e Sá
Resumo
O impacto adverso da construção sobre o meio ambiente contribuiu para o desenvolvimento do conceito de construção sustentável em todo o mundo. Com base nisso houve muitos sistemas de certificação desenvolvidos para fornecer à equipe do projeto uma estrutura para ajudar a alcançar um melhor desenvolvimento sustentável e para avaliar esses edifícios. Atualmente, diferentes países desenvolveram e estudaram extensivamente essessistemas de classificação, tendo sido, neste cenário, proposto vários indicadores de desenvolvimento sustentável. No entanto, estudos anteriores de outros autores apontam que esses sistemas apresentam negligência da valoração entre os eixos ambiental, social e econômico dos indicadores. Logo, este artigo buscou a percepção da sustentabilidade de diferentes países pela ótica dos seus sistemas de certificação, de forma a perceber o motivo dessa falta de ponderação entre os três eixos da sustentabilidade, bem como quais características cada uma influencia. Os resultados encontrados pela revisão bibliográfica demonstram que as diferentes valorações dos sistemas são em virtude de controlar problemas locais, como, por exemplo, o enfoque sobre o consumo de água pelo Green Star da Austrália, as características da estrutura com foco para clima tropical do Green Mark de Cingapura, e a grande valoração em fatores energéticos pelo LEED e BREEAM. Deste modo, apesar de todos os sistemas apontarem essas características em termos de indicadores de desempenho energético, o que aponta para um problema mundial atual, derivado das emissões causadas pelo consumo de energia e entre outros. Com base nisso é possível concluir que em muitos casos não há uma negligência em termos de valoração, mas sim uma necessidade perante os problemas atuais. Futuramente com o controle destes problemas, espera-se que novas atualizações dos sistemas de certificação de sustentabilidade valoração para outros aspectos, conforme a necessidade.
Palavras-chave
Sistemas de classificação de edifícios; Edifícios verdes; Sustentabilidade; GBRTs.
Abstract
Different perceptions of sustainability based on building certification systems: A review.
The adverse impact of construction on the environment has contributed to the development of the
concept of sustainable construction around the world. Based on this, many certification systems
have been developed to provide the design team with a framework to help achieve better
sustainable development and assess these buildings. Different countries have extensively
produced and studied these rating systems, and various sustainable development indicators have
been proposed in this scenario. However, previous studies by other authors point out that these
systems present negligence of the valuation between the indicators’ environmental, social and
economic axes. Therefore, this article sought to assess the perception of sustainability of
different countries from the standpoint of their certification systems to understand the reason
for this lack of weighting among the three axes of sustainability and which characteristics each
one influences. The results found in the bibliographical review show that the different values
of the systems are due to controlling local problems, such as the focus on water consumption by
Australia's Green Star, the characteristics of the structure focused on the tropical climate
of Singapore's Green Mark, and the high value placed on energy factors by LEED and BREEAM.
Thus, all systems point to these characteristics in terms of energy performance indicators, which
means a current global problem derived from emissions caused by energy consumption and others.
Based on this, it is possible to conclude that there is no negligence in terms of valuation in
many cases but a necessity in the face of the current problems. With the control of these problems,
it is expected that new updates of the sustainability certification systems will value other
aspects according to the need.
Keywords
Building rating systems; Green buildings; Sustainability; GBRTs.
DOI
10.21438/rbgas(2022)092216
Texto completo
PDF
Referências
Adapa, S. Factors influencing consumption and anti-consumption of recycled water: Evidence from Australia. Journal of Cleaner Production, v. 201, p. 624-635, 2018. https://doi.org/10.1016/j.jclepro.2018.08.083
Afroz, Z.; Gunay, H. B.; O'Brien, W. A review of data collection and analysis requirements
for certified green buildings. Energy and Buildings, v. 226, p. 110-367, 2020.
https://doi.org/10.1016/j.enbuild.2020.110367
Alyami, H.; Rezgui, Y.; Kwan, A. Developing sustainable building assessment scheme for Saudi
Arabia: Delphi consultation approach. Renewable and Sustainable Energy Reviews, v. 27,
p. 43-54, 2013. https://doi.org/10.1016/j.rser.2013.06.011
Amiri, A.; Ottelin, J.; Sorvari, J.; Junnila, S. Cities as carbon sinks: Classification of
wooden buildings. Environmental Research Letters, v. 15, n. 9, p. 94-76, 2020.
https://doi.org/10.1088/1748-9326/aba134
Asdrubali, F.; Baldinelli, G.; Bianchi, F.; Sambuco, S. A comparison between environmental
sustainability rating systems LEED and ITACA for residential buildings. Building and
Environment, v. 86, p. 98-108, 2015. https://doi.org/10.1016/j.buildenv.2015.01.001
Baglivo, C.; Congedo, P. M. Design method of high performance precast external walls for
warm climate by multi-objective optimization analysis. Energy, v. 90, p. 1645-1661,
2015. https://doi.org/10.1016/j.energy.2015.06.132
Barbieri, E. S.; Morini, M.; Munari, E.; Pinelli, M.; Spina, P. R.; Vecci, R. Concurrent
optimization of size and switch-on priority of a multi-source energy system for a
commercial building application. Energy Procedia, v. 81, p. 45-54, 2015.
https://doi.org/10.1016/j.egypro.2015.12.058
BCA. Green Mark for Non-Residential Buildings - NRB. 2015. Building and Construction
Authority, 2015. Disponível em: <https://www.bca.gov.sg/GreenMark/others/Green_Mark_NRB_2015_Criteria.pdf>.
Acesso em: 5 nov. 2020.
Bernardi, E.; Carlucci, S.; Cornaro, C.; Bohne, R. An analysis of the most adopted rating
systems for assessing the environmental impact of buildings. Sustainability, v. 9,
n. 7, 1226, 2017. https://doi.org/10.3390/su9071226
Bertoldi, P. (Org.). Improving energy efficiency in commercial buildings and smart
communities: Proceedings of the 10th International Conference IEECB&SC'18.
Cham: Springer, 2020. https://doi.org/10.1007/978-3-030-31459-0
Bidou, D. The HQE approach: Realities and perspectives of building environmental quality.
Management of Environmental Quality: An International Journal, v. 17, n. 5,
p. 587-592, 2006. https://doi.org/10.1108/14777830610684549
Bondareva, E. Green Star: LEED's Australian cousin. Journal of Green Building,
v. 2, n. 3, p. 32-40, 2007. https://doi.org/10.3992/jgb.2.3.32
Bozovic-Stamenovic, R.; Kishnani, N.; Tan, B. K.; Prasad, D.; Faizal, F. Assessment of
awareness of Green Mark (GM) rating tool by occupants of GM buildings and general
public. Energy and Buildings, v. 115, p. 55-62, 2016. https://doi.org/10.1016/j.enbuild.2015.01.003
BREEAM - Building Research Establishment Environmental Assessment Method. BREEAM UK New
Construction 2018. Disponível em: <https://www.breeam.com/NC2018/content/resources/output/10_pdf/a4_pdf/print/nc_uk_a4_print_mono/nc_uk_a4_print_mono.pdf>.
Acesso em: 8 maio 2020.
Bruno Polli, G. H. A Comparison about European Environmental Sustainability Rating Systems.
University of Porto Journal of Engineering, v. 6, n. 2, p. 46-58, 2020. https://doi.org/10.24840/2183-6493_006.002_0005
Cerminara, G.; Cossu, R. Waste input to landfills. In: Cossu, R.; Stegmann, R. Solid waste
landfilling. Cham: Elsevier, 2018. p. 15-39. https://doi.org/10.1016/B978-0-12-407721-8.00002-4
Chen, X.; Yang, H.; Lu, L. A comprehensive review on passive design approaches in green
building rating tools. Renewable and Sustainable Energy Reviews, v. 50,
p. 1425-1436, 2015. https://doi.org/10.1016/j.rser.2015.06.003
Citerne, F.; Goldsmith, D.; Beliveau, Y. Overview of International Green Building Rating
Systems. 50th ASC Annual International Conference Proceedings, p. 8, 2014.
Congedo, P. M.; Baglivo, C.; Zacà, I.; D'Agostino, D.; Quarta, F.;
Cannoletta, A.; Marti, A.; Ostuni, V. Energy retrofit and environmental sustainability
improvement of a historical farmhouse in Southern Italy. Energy Procedia, v 133,
p. 367-381, 2017. https://doi.org/10.1016/j.egypro.2017.09.364
Díaz Lópes, C.; Carpio, M.; Martín-Morales, M.; Zamorano, M. A comparative analysis of
sustainable building assessment methods. Sustainable Cities and Society, v. 49,
101611, 2019. https://doi.org/10.1016/j.scs.2019.101611
Doan, D. T.; Ghaffarianhoseini, A.; Naismith, N.; Zhang, T.; Ghaffarianhoseini, A.;
Tookey, J. A critical comparison of green building rating systems. Building and
Environment, v. 123, p. 243-260, 2017. https://doi.org/10.1016/j.buildenv.2017.07.007
Elkhapery, B.; Kianmehr, P.; Doczy, R. Benefits of retrofitting school buildings in
accordance to LEED v4. Journal of Building Engineering, v. 33, p. 101-798,
2021. https://doi.org/10.1016/j.jobe.2020.101798
Ganassali, S.; Lavagna, M.; Campioli, A. LCA benchmarks in building's environmental
certification systems. 41st IAHS World Congress Sustainability and Innovation for the
Future, p. 10, 2016.
Geng, Y.; Dong, H.; Xue, B.; Fu, J. An overview of Chinese green building standards:
Chinese green building standards. Sustainable Development, v. 20, n. 3,
p. 211-221, 2012. https://doi.org/10.1002/sd.1537
Gurgun, A. P.; Polat, G.; Damci, A.; Bayhan, H. G. Performance of LEED energy credit
requirements in European countries. Procedia Engineering, v. 164, p. 432-438,
2016. https://doi.org/10.1016/j.proeng.2016.11.641
Kats, G. H. >b>Green building costs and financial benefits. Massachusetts:
Massachusetts Technology Collaborative, 2003. Disponível em: <http://staging.community-wealth.org/sites/clone.community-wealth.org/files/downloads/paper-kats.pdf>.
Acesso em: 16 out. 2020.
He, Y.; Kvan, T.; Liu, M.; Li, B. How green building rating systems affect designing
green. Building and Environment, v. 133, p. 19-31, 2018. https://doi.org/10.1016/j.buildenv.2018.02.007
Horvat, M.; Fazio, P. Comparative review of existing certification programs and
performance assessment tools for residential buildings. Architectural Science
Review, v. 48, n. 1, p. 69-80, 2005. https://doi.org/10.3763/asre.2005.4810
Hu, M.; Cunningham, P.; Gilloran, S. Sustainable design rating system comparison
using a life-cycle methodology. Building and Environment, v. 126,
p. 410-421, 2017. https://doi.org/10.1016/j.buildenv.2017.10.010
Illankoon, I. M.; Chethana, S.; Tam, V. W. Y.; Le, K. N.; Shen, L. Key credit criteria
among international green building rating tools. Journal of Cleaner Production,
v. 164, p. 209-220, 2017. https://doi.org/10.1016/j.jclepro.2017.06.206
Illankoon, I. M.; Chethana S.; Tam, V. W. Y.; Le, K. N.; Tran, C. N. N.; Ma, M. Review
on green building rating tools worldwide: Recommendations for Australia. Journal of
Civil Engineering and Management, v. 25, n. 8, p. 831-847, 2019. https://doi.org/10.3846/jcem.2019.10928
Ismaeel, W. S. E. Midpoint and endpoint impact categories in green building rating systems.
Journal of Cleaner Production, v. 182, p. 783-793, 2018. https://doi.org/10.1016/j.jclepro.2018.01.217
Iwaro, J.; Mwasha, A.; Williams, R. G.; Zico, R. An integrated criteria weighting framework
for the sustainable performance assessment and design of building envelope. Renewable
and Sustainable Energy Reviews, v. 29, p. 417-434, 2014. https://doi.org/10.1016/j.rser.2013.08.096
Jalaei, F.; Mohammadi, S. An integrated BIM-LEED application to automate sustainable design
assessment framework at the conceptual stage of building projects. Sustainable Cities
and Society, v. 53, 101979, 2020. https://doi.org/10.1016/j.scs.2019.101979
Jiang, H.; Payne, S. Green housing transition in the Chinese housing market: A behavioural
analysis of real estate enterprises. Journal of Cleaner Production, v. 241, 118381,
2019. https://doi.org/10.1016/j.jclepro.2019.118381
John, J.; Khan, S. The state of our schools. Emirates: Emirates Green Building Council,
2018. Disponível em: <https://emiratesgbc.org/wp-content/uploads/2020/06/The-State-of-Our-Schools-White-Paper-Final-1-3.pdf>.
Acesso em: 13 out. 2020.
Kamaruzzaman, S. N.; Lou, E. C. W.; Zainon, N.; Mohamed Zaid, N. S.; Wong, P. F. Environmental
assessment schemes for non-domestic building refurbishment in the Malaysian context.
Ecological Indicators, v. 69, p. 548-558, 2016. https://doi.org/10.1016/j.ecolind.2016.04.031
Kamsu-Foguem, B.; Abanda, F. H.; Doumbouya, M. B.; Tchouanguem, J. F. Graph-based ontology
reasoning for formal verification of BREEAM rules. Cognitive Systems Research,
v. 55, p. 14-33, 2019. https://doi.org/10.1016/j.cogsys.2018.12.011
Karaca, F.; Guney, M.; Kumisked, A.; Kaskina, D.; Tokbolat, S. A new stakeholder opinion-based
rapid sustainability assessment method (RSAM) for existing residential buildings. Sustainable
Cities and Society, v. 60, 102155, 2020. https://doi.org/10.1016/j.scs.2020.102155
Kawazu, Y. Comparison of the assessment results of BREEAM, LEED, GBtool and CASBEE. The 2005
World Sustainable Building Conference, p. 1700-1705, 2005.
Korkmaz, C.; Balaban, O. Sustainability of urban regeneration in Turkey: Assessing the
performance of the North Ankara Urban Regeneration Project. Habitat International,
v. 95, 102081, 2020. https://doi.org/10.1016/j.habitatint.2019.102081
Lai, X.; Liu, J.; Georgiev, G. Low carbon technology integration innovation assessment
index review based on rough set theory: An evidence from construction industry in
China. Journal of Cleaner Production, v. 126, p. 88-96, 2016. https://doi.org/10.1016/j.jclepro.2016.03.035
Larsson, N. Overview of the SBTool assessment framework. Ottawa: International
Initiative for a Sustainable Built Environment, 2016.
Lazar, N.; Chithra, K. A comprehensive literature review on development of Building
Sustainability Assessment Systems. Journal of Building Engineering, v. 32,
101450, 2020. https://doi.org/10.1016/j.jobe.2020.101450
Lee, W. L. A comprehensive review of metrics of building environmental assessment
schemes. Energy and Buildings, v. 62, p. 403-413, 2013. https://doi.org/10.1016/j.enbuild.2013.03.014
Li, Y.; Yang, L.; He, B.; Zhao, D. Green building in China: Needs great promotion.
Sustainable Cities and Society, v. 11, p. 1-6, 2014. https://doi.org/10.1016/j.scs.2013.10.002
Liu, Y.; Hong, Z.; Zhu, J.; Yan, J.; Qi, J.; Liu, P. Promoting green residential
buildings: Residents' environmental attitude, subjective knowledge, and
social trust matter. Energy Policy, v. 112, p. 152-161, 2018.
https://doi.org/10.1016/j.enpol.2017.10.020
Liu, Y.; Lu, Y.; Hong, Z.; Nian, V.; Loi, T. S. A. The "START" framework
to evaluate national progress in green buildings and its application in cases of
Singapore and China. Environmental Impact Assessment Review, v. 75,
p. 67-78, 2019. https://doi.org/10.1016/j.eiar.2018.12.007
Lohmeng, A.; Sudasna, K.; Tondee, Tusanee. State of The Art of Green Building
Standards and Certification System Development in Thailand. Energy
Procedia, v. 138, p. 417-422, 2017. https://doi.org/10.1016/j.egypro.2017.10.188
Marjaba, G. E.; Chidiac, S. E. Sustainability and resiliency metrics for buildings:
Critical review. Building and Environment, v. 101, p. 116–125, 2016. https://doi.org/10.1016/j.buildenv.2016.03.002
Mateus, R.; Bragança, L. Sustainability assessment and rating of buildings:
Developing the methodology SBToolPT-H. Building and Environment,
v. 46, n. 10, p. 1962-1971, 2011. https://doi.org/10.1016/j.buildenv.2011.04.023
Matos, B.; Barbosa, T.; Almeira, M.; Condorelli, C.; Furtado, J.; Braga, L.
Sustainable building: Assessment tool in Brazil. In: Alvarez, C. E.;
Bragança, L.; Nico-Rodrigues, E. A.; Mateus, R. (Eds.). SBE16 Brazil &
Portugal, SBE16 Brazil & Portugal: Sustainable Urban Communities
towards a Nearly Zero Impact Built Environment. Vitória: Universidade
Federal do Espírito Santo, 2016. Disponível em: <https://sbe16.civil.uminho.pt/app/wp-content/uploads/2016/09/SBE16-Brazil-Portugal-Vol_2-Pag_955.pdf>.
Acesso em: 13 out. 2020.
Mattinzioli, T.; Sol-Sánchez, M.; Moreno, B.; Alegre, J.; Martínez, G. Sustainable
building rating systems: A critical review for achieving a common consensus.
Critical Reviews in Environmental Science and Technology, v. 51, n. 5,
p. 512-534, 2021. https://doi.org/10.1080/10643389.2020.1732781
Mattoni, B.; Guattari, C.; Evangelisti, L.; Bisegna, F.; Gori, P.; Asdrubali, F.
Critical review and methodological approach to evaluate the differences among
international green building rating tools. Renewable and Sustainable Energy
Reviews, v. 82, p. 950-960, 2018. https://doi.org/10.1016/j.rser.2017.09.105
McArthur, J. J.; Powell, C. Health and wellness in commercial buildings: Systematic
review of sustainable building rating systems and alignment with contemporary
research. Building and Environment, v. 171, 106635, 2020. https://doi.org/10.1016/j.buildenv.2019.106635
Morris, A.; Zuo, J.; Wang, Y.; Wang, J. Readiness for sustainable community: A case
study of Green Star Communities. Journal of Cleaner Production, v. 173,
p. 308-317, 2018. https://doi.org/10.1016/j.jclepro.2017.03.190
Murtagh, N.; Scott, L.; Fan, J. Sustainable and resilient construction: Current
status and future challenges. Journal of Cleaner Production, v. 268,
122264, 2020. https://doi.org/10.1016/j.jclepro.2020.122264
Nguyen, B. K.; Altan, H. Tall-Building Projects Sustainability Indicator (TPSI):
A new design and environmental assessment tool for tall buildings. Buildings,
v. 2, n. 2, p. 43-62, 2012. https://doi.org/10.3390/buildings2020043
Nicol, L. A. Sustainable collective housing: Policy and practice for multi-family
dwellings. 1. ed. Londres: Routledge, 2012. https://doi.org/10.4324/9780203084748
Nilashi, M.; Zakaria, R.; Ibrahim, O.; Majid, M. Z. A.; Zin, R. M.; Chugtai, M. W.; Abidin,
N. I. Z.; Sahamir, S. R.; Yakubu, D. A knowledge-based expert system for assessing the
performance level of green buildings. Knowledge-Based Systems, v. 86,
p. 194-209, 2015. https://doi.org/10.1016/j.knosys.2015.06.009
Pagliaro, F.; Cellucci, L.; Burattini, C.; Bisegna, F.; Gugliermetti, F.; De Lieto Vollaro,
A.; Sallata, F.; Golasi, I. A methodological comparison between energy and environmental
performance evaluation. Sustainability, v. 7, n. 8, p. 10324-10342, 2015.
https://doi.org/10.3390/su70810324
Petrella, B. Three sustainable residential neighborhoods in South Italy. Procedia - Social
and Behavioral Sciences, v. 216, p. 874-887, 2016. https://doi.org/10.1016/j.sbspro.2015.12.084
Porumb, V.-A.; Maier, G.; Anghel, I. The impact of building location on green certification
price premiums: Evidence from three European countries. Journal of Cleaner Production,
v. 272, 122080, 2020. https://doi.org/10.1016/j.jclepro.2020.122080
Raab, S. Key diversity in existing green buildings standards GBEL DGNB LEED and
OEGNB: Focus on new construction and commercial buildings. Wien: Technische
Universität Wien, 2015. https://doi.org/10.34726/hss.2015.30301
Reed, R.; Australia, V.; Bilos, A.; Schulte, K.-W. A comparison of international
sustainable building tools: An update. Proceeding of the 17th Annual Pacific
Rim Real Estate Society Conference, p. 17, 2015.
Sahin, O.; Stewart, R. A.; Porter, M. G. Water security through scarcity pricing
and reverse osmosis: A system dynamics approach. Journal of Cleaner
Production, v. 88, p. 160-171, 2015. https://doi.org/10.1016/j.jclepro.2014.05.009
Sánchez Cordero, A.; Gómez Melgar, S.; Andújar Márquez, J. M. Green building rating
systems and the new framework level(s): A critical review of sustainability
certification within Europe. Energies, v. 13, n. 1, p. 66, 2019.
https://doi.org/10.3390/en13010066
Schmidt, M.; Crawford, R. H.; Warren-Myers, G. Quantifying Australia's life
cycle greenhouse gas emissions for new homes. Energy and Buildings,
v. 224, 110287, 2020. https://doi.org/10.1016/j.enbuild.2020.110287
Seppälä, J.; Leskinen, P.; Myllyviita, T. Expert Panel Weighting and
Aggregation of the Sustainable Society Index (SSI) 2010 - A decision analysis
approach: Weighting and Aggregation of the Sustainable Society Index (SSI).
Sustainable Development, v. 25, n. 4, p. 322-335, 2017. https://doi.org/10.1002/sd.1659
Shad, R.; Khorrami, M.; Ghaemi, M. Developing an Iranian green building assessment
tool using decision making methods and Geographical Information System: Case study
in Mashhad City. Renewable and Sustainable Energy Reviews, v. 67,
p. 324-340, 2017. https://doi.org/10.1016/j.rser.2016.09.004
Shamseldin, A. K. M. Including the building environmental efficiency in the
environmental building rating systems. Ain Shams Engineering Journal,
v. 9, n. 4, p. 455-468, 2018. https://doi.org/10.1016/j.asej.2016.02.006
Sharifi, A.; Murayama, A. A critical review of seven selected neighborhood
sustainability assessment tools. Environmental Impact Assessment Review,
v. 38, p. 73-87, 2013. https://doi.org/10.1016/j.eiar.2012.06.006
Suzer, O. A comparative review of environmental concern prioritization: LEED
vs other major certification systems. Journal of Environmental Management,
v. 154, p. 266-283, 2015. https://doi.org/10.1016/j.jenvman.2015.02.029
Suzer, O. Analyzing the compliance and correlation of LEED and BREEAM by conducting
a criteria-based comparative analysis and evaluating dual-certified projects.
Building and Environment, v. 147, p. 158-170, 2019. https://doi.org/10.1016/j.buildenv.2018.09.001
Suzuki, F. S.; Miranda, M. L. J. A história da imigração japonesa e seus descendentes:
prática de atividade física e aspectos sócio-culturais. Conexões, v. 6,
p. 409-418, 2008. https://doi.org/10.20396/conex.v6i0.8637844
Szymański, P.; Winiecka-Kowalczyk, B.; Nowotarski, P. Multi-criteria certification
of buildings in Poland. Technical Transactions Civil Engineering, v. 2-B,
p. 81-89, 2014. https://doi.org/10.4467/2353737XCT.14.115.2565
Tham, K. W.; Lee, J.; Lim, S. L. C. Comparing cohort perception and satisfaction moving
from non-Green Mark certified to certified buildings. Proceedings of Healthy Buildings
Europe, 2017.
Ting, K. H. Tropical green building rating systems: A comparison between Green Building
Index and BCA Green Mark. Proceedings of the IEEE Business, Engineering & Industrial
Applications Colloquium (BEIAC), p. 263-268, 2012. https://doi.org/10.1109/BEIAC.2012.6226064
Ullah, W.; Noor, S.; Tariq, A. The development of a basic framework for the sustainability
of residential buildings in Pakistan. Sustainable Cities and Society, v. 40,
p. 365-371, 2018. https://doi.org/10.1016/j.scs.2018.04.009
Varma, C. R. S.; Palaniappan, S. Comparision of green building rating schemes used in
North America, Europe and Asia. Habitat International, v. 89, 101989, 2019.
https://doi.org/10.1016/j.habitatint.2019.05.008
Vigovskaya, A.; Aleksandrova, O.; Bulgakov, B. Life Cycle Assessment (LCA) of a LEED
certified building. IOP Conference Series: Materials Science and Engineering,
v. 365, 022007, 2018. https://doi.org/10.1088/1757-899X/365/2/022007
Wang, H.; Wang, T.; Zhang, B.; Li, F.; Toure, B.; Omosa, I. B.; Chiramba, T.; Abdel-Monem,
M.; Pradhan, M. Water and wastewater treatment in Africa: Current practices and challenges.
Clean - Soil, Air, Water, v. 42, n. 8, p. 1029-1035, 2014. https://doi.org/10.1002/clen.201300208
Wen, B.; Musa, N.; Onn, C. C.; Ramesh, S.; Liang, L.; Wang, W. Evolution of sustainability
in global green building rating tools. Journal of Cleaner Production, v. 259,
120912, 2020. https://doi.org/10.1016/j.jclepro.2020.120912
Wijaya, H.; Chiam, B. H.; Ang, K. W.; Xie, Y.; Lai, S. Smart green underground metro station
in Singapore. HKIE Transactions, v. 24, n. 2, p. 113-120, 2017. https://doi.org/10.1080/1023697X.2017.1313136
Worden, K.; Hazer, M.; Pyke, C.; Trowbridge, M. Using LEED green rating systems to promote
population health. Building and Environment, v. 172, 106550, 2020. https://doi.org/10.1016/j.buildenv.2019.106550
Wu, P.; Song, Y.; Shou, W.; Chi, H.; Chong, H.-Y.; Sutrisna, M. A comprehensive analysis
of the credits obtained by LEED 2009 certified green buildings. Renewable and
Sustainable Energy Reviews, v. 68, p. 370-379, 2017. https://doi.org/10.1016/j.rser.2016.10.007
Yadegaridehkordi, E.; Hourmand, M.; Nilashi, M.; Alsolami, E.; Samad, S.; Mahmoud, M.;
Alarood, A. A.; Zainol, A.; Majeed, H. D.; Shuib, L. Assessment of sustainability
indicators for green building manufacturing using fuzzy multi-criteria decision
making approach. Journal of Cleaner Production, v. 277, 122905, 2020.
https://doi.org/10.1016/j.jclepro.2020.122905
Yas, Z.; Jaafer, K. Factors influencing the spread of green building projects in the UAE.
Journal of Building Engineering, v. 27, 100894, 2020. https://doi.org/10.1016/j.jobe.2019.100894
Ye, L.; Cheng, Z.; Wang, Q.; Lin, W.; Ren, F. Overview on Green Building Label in China.
Renewable Energy, v. 53, p. 220-229, 2013. https://doi.org/10.1016/j.renene.2012.11.022
Yu, W.; Li, B.; Yang, X.; Wang, Q. A development of a rating method and weighting system
for green store buildings in China. Renewable Energy, v. 73, p. 123-129, 2015.
https://doi.org/10.1016/j.renene.2014.06.013
Zarchami, E.; Fatourehchi, D. Comparative analysis of rating systems in developing and
developed countries: A systematic review and a future agenda towards a region-based
sustainability assessment. Journal of Cleaner Production, v. 254, 120024, 2020.
https://doi.org/10.1016/j.jclepro.2020.120024
Zarchami, E.; Fatourehchi, D.; Karamloo, M. Establishing a region-based rating system
for multi-family residential buildings in Iran: A holistic approach to sustainability.
Sustainable Cities and Society, v. 50, 101631, 2019. https://doi.org/10.1016/j.scs.2019.101631
Zhao, D.; Miotto, A. B.; Syal, M.; Chen, J. Framework for benchmarking green building
movement: A case of Brazil. Sustainable Cities and Society, v. 48, 101545, 2019.
https://doi.org/10.1016/j.scs.2019.101545
Zhao, D.-X.; He, B.-J.; Johnson, C.; Mou, B. Social problems of green buildings: From
the humanistic needs to social acceptance. Renewable and Sustainable Energy Reviews,
v. 51, p. 1594-1609, 2015. https://doi.org/10.1016/j.rser.2015.07.072
Zou, Y. Certifying green buildings in China: LEED vs. 3-star. Journal of Cleaner
Production, v. 208, p. 880-888, 2019. https://doi.org/10.1016/j.jclepro.2018.10.204
Zuo, J.; Zhao, Z.-Y. Green building research - current status and future agenda:
A review. Renewable and Sustainable Energy Reviews, v. 30, p. 271-281,
2014. https://doi.org/10.1016/j.rser.2013.10.021
ISSN 2359-1412