Revista Brasileira de Gestao Ambiental e Sustentabilidade (ISSN 2359-1412)
Bookmark this page

Home > Edições Anteriores > v. 9, n. 22 (2022) > Bruno Polli

 

Vol. 9, No 22, p. 777-793 - 31 ago. 2022

 

Diferentes percepções de sustentabilidade com base nos sistemas de certificaçã de edifícios: uma revisão



Gustavo Henrique Bruno Polli e Ana Margarida Vaz Duarte Oliveira e Sá

Resumo
O impacto adverso da construção sobre o meio ambiente contribuiu para o desenvolvimento do conceito de construção sustentável em todo o mundo. Com base nisso houve muitos sistemas de certificação desenvolvidos para fornecer à equipe do projeto uma estrutura para ajudar a alcançar um melhor desenvolvimento sustentável e para avaliar esses edifícios. Atualmente, diferentes países desenvolveram e estudaram extensivamente essessistemas de classificação, tendo sido, neste cenário, proposto vários indicadores de desenvolvimento sustentável. No entanto, estudos anteriores de outros autores apontam que esses sistemas apresentam negligência da valoração entre os eixos ambiental, social e econômico dos indicadores. Logo, este artigo buscou a percepção da sustentabilidade de diferentes países pela ótica dos seus sistemas de certificação, de forma a perceber o motivo dessa falta de ponderação entre os três eixos da sustentabilidade, bem como quais características cada uma influencia. Os resultados encontrados pela revisão bibliográfica demonstram que as diferentes valorações dos sistemas são em virtude de controlar problemas locais, como, por exemplo, o enfoque sobre o consumo de água pelo Green Star da Austrália, as características da estrutura com foco para clima tropical do Green Mark de Cingapura, e a grande valoração em fatores energéticos pelo LEED e BREEAM. Deste modo, apesar de todos os sistemas apontarem essas características em termos de indicadores de desempenho energético, o que aponta para um problema mundial atual, derivado das emissões causadas pelo consumo de energia e entre outros. Com base nisso é possível concluir que em muitos casos não há uma negligência em termos de valoração, mas sim uma necessidade perante os problemas atuais. Futuramente com o controle destes problemas, espera-se que novas atualizações dos sistemas de certificação de sustentabilidade valoração para outros aspectos, conforme a necessidade.


Palavras-chave
Sistemas de classificação de edifícios; Edifícios verdes; Sustentabilidade; GBRTs.

Abstract
Different perceptions of sustainability based on building certification systems: A review. The adverse impact of construction on the environment has contributed to the development of the concept of sustainable construction around the world. Based on this, many certification systems have been developed to provide the design team with a framework to help achieve better sustainable development and assess these buildings. Different countries have extensively produced and studied these rating systems, and various sustainable development indicators have been proposed in this scenario. However, previous studies by other authors point out that these systems present negligence of the valuation between the indicators’ environmental, social and economic axes. Therefore, this article sought to assess the perception of sustainability of different countries from the standpoint of their certification systems to understand the reason for this lack of weighting among the three axes of sustainability and which characteristics each one influences. The results found in the bibliographical review show that the different values of the systems are due to controlling local problems, such as the focus on water consumption by Australia's Green Star, the characteristics of the structure focused on the tropical climate of Singapore's Green Mark, and the high value placed on energy factors by LEED and BREEAM. Thus, all systems point to these characteristics in terms of energy performance indicators, which means a current global problem derived from emissions caused by energy consumption and others. Based on this, it is possible to conclude that there is no negligence in terms of valuation in many cases but a necessity in the face of the current problems. With the control of these problems, it is expected that new updates of the sustainability certification systems will value other aspects according to the need.


Keywords
Building rating systems; Green buildings; Sustainability; GBRTs.

DOI
10.21438/rbgas(2022)092216

Texto completo
PDF

Referências
Adapa, S. Factors influencing consumption and anti-consumption of recycled water: Evidence from Australia. Journal of Cleaner Production, v. 201, p. 624-635, 2018. https://doi.org/10.1016/j.jclepro.2018.08.083

Afroz, Z.; Gunay, H. B.; O'Brien, W. A review of data collection and analysis requirements for certified green buildings. Energy and Buildings, v. 226, p. 110-367, 2020. https://doi.org/10.1016/j.enbuild.2020.110367

Alyami, H.; Rezgui, Y.; Kwan, A. Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach. Renewable and Sustainable Energy Reviews, v. 27, p. 43-54, 2013. https://doi.org/10.1016/j.rser.2013.06.011

Amiri, A.; Ottelin, J.; Sorvari, J.; Junnila, S. Cities as carbon sinks: Classification of wooden buildings. Environmental Research Letters, v. 15, n. 9, p. 94-76, 2020. https://doi.org/10.1088/1748-9326/aba134

Asdrubali, F.; Baldinelli, G.; Bianchi, F.; Sambuco, S. A comparison between environmental sustainability rating systems LEED and ITACA for residential buildings. Building and Environment, v. 86, p. 98-108, 2015. https://doi.org/10.1016/j.buildenv.2015.01.001

Baglivo, C.; Congedo, P. M. Design method of high performance precast external walls for warm climate by multi-objective optimization analysis. Energy, v. 90, p. 1645-1661, 2015. https://doi.org/10.1016/j.energy.2015.06.132

Barbieri, E. S.; Morini, M.; Munari, E.; Pinelli, M.; Spina, P. R.; Vecci, R. Concurrent optimization of size and switch-on priority of a multi-source energy system for a commercial building application. Energy Procedia, v. 81, p. 45-54, 2015. https://doi.org/10.1016/j.egypro.2015.12.058

BCA. Green Mark for Non-Residential Buildings - NRB. 2015. Building and Construction Authority, 2015. Disponível em: <https://www.bca.gov.sg/GreenMark/others/Green_Mark_NRB_2015_Criteria.pdf>. Acesso em: 5 nov. 2020.

Bernardi, E.; Carlucci, S.; Cornaro, C.; Bohne, R. An analysis of the most adopted rating systems for assessing the environmental impact of buildings. Sustainability, v. 9, n. 7, 1226, 2017. https://doi.org/10.3390/su9071226

Bertoldi, P. (Org.). Improving energy efficiency in commercial buildings and smart communities: Proceedings of the 10th International Conference IEECB&SC'18. Cham: Springer, 2020. https://doi.org/10.1007/978-3-030-31459-0

Bidou, D. The HQE approach: Realities and perspectives of building environmental quality. Management of Environmental Quality: An International Journal, v. 17, n. 5, p. 587-592, 2006. https://doi.org/10.1108/14777830610684549

Bondareva, E. Green Star: LEED's Australian cousin. Journal of Green Building, v. 2, n. 3, p. 32-40, 2007. https://doi.org/10.3992/jgb.2.3.32

Bozovic-Stamenovic, R.; Kishnani, N.; Tan, B. K.; Prasad, D.; Faizal, F. Assessment of awareness of Green Mark (GM) rating tool by occupants of GM buildings and general public. Energy and Buildings, v. 115, p. 55-62, 2016. https://doi.org/10.1016/j.enbuild.2015.01.003

BREEAM - Building Research Establishment Environmental Assessment Method. BREEAM UK New Construction 2018. Disponível em: <https://www.breeam.com/NC2018/content/resources/output/10_pdf/a4_pdf/print/nc_uk_a4_print_mono/nc_uk_a4_print_mono.pdf>. Acesso em: 8 maio 2020.

Bruno Polli, G. H. A Comparison about European Environmental Sustainability Rating Systems. University of Porto Journal of Engineering, v. 6, n. 2, p. 46-58, 2020. https://doi.org/10.24840/2183-6493_006.002_0005

Cerminara, G.; Cossu, R. Waste input to landfills. In: Cossu, R.; Stegmann, R. Solid waste landfilling. Cham: Elsevier, 2018. p. 15-39. https://doi.org/10.1016/B978-0-12-407721-8.00002-4

Chen, X.; Yang, H.; Lu, L. A comprehensive review on passive design approaches in green building rating tools. Renewable and Sustainable Energy Reviews, v. 50, p. 1425-1436, 2015. https://doi.org/10.1016/j.rser.2015.06.003

Citerne, F.; Goldsmith, D.; Beliveau, Y. Overview of International Green Building Rating Systems. 50th ASC Annual International Conference Proceedings, p. 8, 2014.

Congedo, P. M.; Baglivo, C.; Zacà, I.; D'Agostino, D.; Quarta, F.; Cannoletta, A.; Marti, A.; Ostuni, V. Energy retrofit and environmental sustainability improvement of a historical farmhouse in Southern Italy. Energy Procedia, v 133, p. 367-381, 2017. https://doi.org/10.1016/j.egypro.2017.09.364

Díaz Lópes, C.; Carpio, M.; Martín-Morales, M.; Zamorano, M. A comparative analysis of sustainable building assessment methods. Sustainable Cities and Society, v. 49, 101611, 2019. https://doi.org/10.1016/j.scs.2019.101611

Doan, D. T.; Ghaffarianhoseini, A.; Naismith, N.; Zhang, T.; Ghaffarianhoseini, A.; Tookey, J. A critical comparison of green building rating systems. Building and Environment, v. 123, p. 243-260, 2017. https://doi.org/10.1016/j.buildenv.2017.07.007

Elkhapery, B.; Kianmehr, P.; Doczy, R. Benefits of retrofitting school buildings in accordance to LEED v4. Journal of Building Engineering, v. 33, p. 101-798, 2021. https://doi.org/10.1016/j.jobe.2020.101798

Ganassali, S.; Lavagna, M.; Campioli, A. LCA benchmarks in building's environmental certification systems. 41st IAHS World Congress Sustainability and Innovation for the Future, p. 10, 2016.

Geng, Y.; Dong, H.; Xue, B.; Fu, J. An overview of Chinese green building standards: Chinese green building standards. Sustainable Development, v. 20, n. 3, p. 211-221, 2012. https://doi.org/10.1002/sd.1537

Gurgun, A. P.; Polat, G.; Damci, A.; Bayhan, H. G. Performance of LEED energy credit requirements in European countries. Procedia Engineering, v. 164, p. 432-438, 2016. https://doi.org/10.1016/j.proeng.2016.11.641

Kats, G. H. >b>Green building costs and financial benefits. Massachusetts: Massachusetts Technology Collaborative, 2003. Disponível em: <http://staging.community-wealth.org/sites/clone.community-wealth.org/files/downloads/paper-kats.pdf>. Acesso em: 16 out. 2020.

He, Y.; Kvan, T.; Liu, M.; Li, B. How green building rating systems affect designing green. Building and Environment, v. 133, p. 19-31, 2018. https://doi.org/10.1016/j.buildenv.2018.02.007

Horvat, M.; Fazio, P. Comparative review of existing certification programs and performance assessment tools for residential buildings. Architectural Science Review, v. 48, n. 1, p. 69-80, 2005. https://doi.org/10.3763/asre.2005.4810

Hu, M.; Cunningham, P.; Gilloran, S. Sustainable design rating system comparison using a life-cycle methodology. Building and Environment, v. 126, p. 410-421, 2017. https://doi.org/10.1016/j.buildenv.2017.10.010

Illankoon, I. M.; Chethana, S.; Tam, V. W. Y.; Le, K. N.; Shen, L. Key credit criteria among international green building rating tools. Journal of Cleaner Production, v. 164, p. 209-220, 2017. https://doi.org/10.1016/j.jclepro.2017.06.206

Illankoon, I. M.; Chethana S.; Tam, V. W. Y.; Le, K. N.; Tran, C. N. N.; Ma, M. Review on green building rating tools worldwide: Recommendations for Australia. Journal of Civil Engineering and Management, v. 25, n. 8, p. 831-847, 2019. https://doi.org/10.3846/jcem.2019.10928

Ismaeel, W. S. E. Midpoint and endpoint impact categories in green building rating systems. Journal of Cleaner Production, v. 182, p. 783-793, 2018. https://doi.org/10.1016/j.jclepro.2018.01.217

Iwaro, J.; Mwasha, A.; Williams, R. G.; Zico, R. An integrated criteria weighting framework for the sustainable performance assessment and design of building envelope. Renewable and Sustainable Energy Reviews, v. 29, p. 417-434, 2014. https://doi.org/10.1016/j.rser.2013.08.096

Jalaei, F.; Mohammadi, S. An integrated BIM-LEED application to automate sustainable design assessment framework at the conceptual stage of building projects. Sustainable Cities and Society, v. 53, 101979, 2020. https://doi.org/10.1016/j.scs.2019.101979

Jiang, H.; Payne, S. Green housing transition in the Chinese housing market: A behavioural analysis of real estate enterprises. Journal of Cleaner Production, v. 241, 118381, 2019. https://doi.org/10.1016/j.jclepro.2019.118381

John, J.; Khan, S. The state of our schools. Emirates: Emirates Green Building Council, 2018. Disponível em: <https://emiratesgbc.org/wp-content/uploads/2020/06/The-State-of-Our-Schools-White-Paper-Final-1-3.pdf>. Acesso em: 13 out. 2020.

Kamaruzzaman, S. N.; Lou, E. C. W.; Zainon, N.; Mohamed Zaid, N. S.; Wong, P. F. Environmental assessment schemes for non-domestic building refurbishment in the Malaysian context. Ecological Indicators, v. 69, p. 548-558, 2016. https://doi.org/10.1016/j.ecolind.2016.04.031

Kamsu-Foguem, B.; Abanda, F. H.; Doumbouya, M. B.; Tchouanguem, J. F. Graph-based ontology reasoning for formal verification of BREEAM rules. Cognitive Systems Research, v. 55, p. 14-33, 2019. https://doi.org/10.1016/j.cogsys.2018.12.011

Karaca, F.; Guney, M.; Kumisked, A.; Kaskina, D.; Tokbolat, S. A new stakeholder opinion-based rapid sustainability assessment method (RSAM) for existing residential buildings. Sustainable Cities and Society, v. 60, 102155, 2020. https://doi.org/10.1016/j.scs.2020.102155

Kawazu, Y. Comparison of the assessment results of BREEAM, LEED, GBtool and CASBEE. The 2005 World Sustainable Building Conference, p. 1700-1705, 2005.

Korkmaz, C.; Balaban, O. Sustainability of urban regeneration in Turkey: Assessing the performance of the North Ankara Urban Regeneration Project. Habitat International, v. 95, 102081, 2020. https://doi.org/10.1016/j.habitatint.2019.102081

Lai, X.; Liu, J.; Georgiev, G. Low carbon technology integration innovation assessment index review based on rough set theory: An evidence from construction industry in China. Journal of Cleaner Production, v. 126, p. 88-96, 2016. https://doi.org/10.1016/j.jclepro.2016.03.035

Larsson, N. Overview of the SBTool assessment framework. Ottawa: International Initiative for a Sustainable Built Environment, 2016.

Lazar, N.; Chithra, K. A comprehensive literature review on development of Building Sustainability Assessment Systems. Journal of Building Engineering, v. 32, 101450, 2020. https://doi.org/10.1016/j.jobe.2020.101450

Lee, W. L. A comprehensive review of metrics of building environmental assessment schemes. Energy and Buildings, v. 62, p. 403-413, 2013. https://doi.org/10.1016/j.enbuild.2013.03.014

Li, Y.; Yang, L.; He, B.; Zhao, D. Green building in China: Needs great promotion. Sustainable Cities and Society, v. 11, p. 1-6, 2014. https://doi.org/10.1016/j.scs.2013.10.002

Liu, Y.; Hong, Z.; Zhu, J.; Yan, J.; Qi, J.; Liu, P. Promoting green residential buildings: Residents' environmental attitude, subjective knowledge, and social trust matter. Energy Policy, v. 112, p. 152-161, 2018. https://doi.org/10.1016/j.enpol.2017.10.020

Liu, Y.; Lu, Y.; Hong, Z.; Nian, V.; Loi, T. S. A. The "START" framework to evaluate national progress in green buildings and its application in cases of Singapore and China. Environmental Impact Assessment Review, v. 75, p. 67-78, 2019. https://doi.org/10.1016/j.eiar.2018.12.007

Lohmeng, A.; Sudasna, K.; Tondee, Tusanee. State of The Art of Green Building Standards and Certification System Development in Thailand. Energy Procedia, v. 138, p. 417-422, 2017. https://doi.org/10.1016/j.egypro.2017.10.188

Marjaba, G. E.; Chidiac, S. E. Sustainability and resiliency metrics for buildings: Critical review. Building and Environment, v. 101, p. 116–125, 2016. https://doi.org/10.1016/j.buildenv.2016.03.002

Mateus, R.; Bragança, L. Sustainability assessment and rating of buildings: Developing the methodology SBToolPT-H. Building and Environment, v. 46, n. 10, p. 1962-1971, 2011. https://doi.org/10.1016/j.buildenv.2011.04.023

Matos, B.; Barbosa, T.; Almeira, M.; Condorelli, C.; Furtado, J.; Braga, L. Sustainable building: Assessment tool in Brazil. In: Alvarez, C. E.; Bragança, L.; Nico-Rodrigues, E. A.; Mateus, R. (Eds.). SBE16 Brazil & Portugal, SBE16 Brazil & Portugal: Sustainable Urban Communities towards a Nearly Zero Impact Built Environment. Vitória: Universidade Federal do Espírito Santo, 2016. Disponível em: <https://sbe16.civil.uminho.pt/app/wp-content/uploads/2016/09/SBE16-Brazil-Portugal-Vol_2-Pag_955.pdf>. Acesso em: 13 out. 2020.

Mattinzioli, T.; Sol-Sánchez, M.; Moreno, B.; Alegre, J.; Martínez, G. Sustainable building rating systems: A critical review for achieving a common consensus. Critical Reviews in Environmental Science and Technology, v. 51, n. 5, p. 512-534, 2021. https://doi.org/10.1080/10643389.2020.1732781

Mattoni, B.; Guattari, C.; Evangelisti, L.; Bisegna, F.; Gori, P.; Asdrubali, F. Critical review and methodological approach to evaluate the differences among international green building rating tools. Renewable and Sustainable Energy Reviews, v. 82, p. 950-960, 2018. https://doi.org/10.1016/j.rser.2017.09.105

McArthur, J. J.; Powell, C. Health and wellness in commercial buildings: Systematic review of sustainable building rating systems and alignment with contemporary research. Building and Environment, v. 171, 106635, 2020. https://doi.org/10.1016/j.buildenv.2019.106635

Morris, A.; Zuo, J.; Wang, Y.; Wang, J. Readiness for sustainable community: A case study of Green Star Communities. Journal of Cleaner Production, v. 173, p. 308-317, 2018. https://doi.org/10.1016/j.jclepro.2017.03.190

Murtagh, N.; Scott, L.; Fan, J. Sustainable and resilient construction: Current status and future challenges. Journal of Cleaner Production, v. 268, 122264, 2020. https://doi.org/10.1016/j.jclepro.2020.122264

Nguyen, B. K.; Altan, H. Tall-Building Projects Sustainability Indicator (TPSI): A new design and environmental assessment tool for tall buildings. Buildings, v. 2, n. 2, p. 43-62, 2012. https://doi.org/10.3390/buildings2020043

Nicol, L. A. Sustainable collective housing: Policy and practice for multi-family dwellings. 1. ed. Londres: Routledge, 2012. https://doi.org/10.4324/9780203084748

Nilashi, M.; Zakaria, R.; Ibrahim, O.; Majid, M. Z. A.; Zin, R. M.; Chugtai, M. W.; Abidin, N. I. Z.; Sahamir, S. R.; Yakubu, D. A knowledge-based expert system for assessing the performance level of green buildings. Knowledge-Based Systems, v. 86, p. 194-209, 2015. https://doi.org/10.1016/j.knosys.2015.06.009

Pagliaro, F.; Cellucci, L.; Burattini, C.; Bisegna, F.; Gugliermetti, F.; De Lieto Vollaro, A.; Sallata, F.; Golasi, I. A methodological comparison between energy and environmental performance evaluation. Sustainability, v. 7, n. 8, p. 10324-10342, 2015. https://doi.org/10.3390/su70810324

Petrella, B. Three sustainable residential neighborhoods in South Italy. Procedia - Social and Behavioral Sciences, v. 216, p. 874-887, 2016. https://doi.org/10.1016/j.sbspro.2015.12.084

Porumb, V.-A.; Maier, G.; Anghel, I. The impact of building location on green certification price premiums: Evidence from three European countries. Journal of Cleaner Production, v. 272, 122080, 2020. https://doi.org/10.1016/j.jclepro.2020.122080

Raab, S. Key diversity in existing green buildings standards GBEL DGNB LEED and OEGNB: Focus on new construction and commercial buildings. Wien: Technische Universität Wien, 2015. https://doi.org/10.34726/hss.2015.30301

Reed, R.; Australia, V.; Bilos, A.; Schulte, K.-W. A comparison of international sustainable building tools: An update. Proceeding of the 17th Annual Pacific Rim Real Estate Society Conference, p. 17, 2015.

Sahin, O.; Stewart, R. A.; Porter, M. G. Water security through scarcity pricing and reverse osmosis: A system dynamics approach. Journal of Cleaner Production, v. 88, p. 160-171, 2015. https://doi.org/10.1016/j.jclepro.2014.05.009

Sánchez Cordero, A.; Gómez Melgar, S.; Andújar Márquez, J. M. Green building rating systems and the new framework level(s): A critical review of sustainability certification within Europe. Energies, v. 13, n. 1, p. 66, 2019. https://doi.org/10.3390/en13010066

Schmidt, M.; Crawford, R. H.; Warren-Myers, G. Quantifying Australia's life cycle greenhouse gas emissions for new homes. Energy and Buildings, v. 224, 110287, 2020. https://doi.org/10.1016/j.enbuild.2020.110287

Seppälä, J.; Leskinen, P.; Myllyviita, T. Expert Panel Weighting and Aggregation of the Sustainable Society Index (SSI) 2010 - A decision analysis approach: Weighting and Aggregation of the Sustainable Society Index (SSI). Sustainable Development, v. 25, n. 4, p. 322-335, 2017. https://doi.org/10.1002/sd.1659

Shad, R.; Khorrami, M.; Ghaemi, M. Developing an Iranian green building assessment tool using decision making methods and Geographical Information System: Case study in Mashhad City. Renewable and Sustainable Energy Reviews, v. 67, p. 324-340, 2017. https://doi.org/10.1016/j.rser.2016.09.004

Shamseldin, A. K. M. Including the building environmental efficiency in the environmental building rating systems. Ain Shams Engineering Journal, v. 9, n. 4, p. 455-468, 2018. https://doi.org/10.1016/j.asej.2016.02.006

Sharifi, A.; Murayama, A. A critical review of seven selected neighborhood sustainability assessment tools. Environmental Impact Assessment Review, v. 38, p. 73-87, 2013. https://doi.org/10.1016/j.eiar.2012.06.006

Suzer, O. A comparative review of environmental concern prioritization: LEED vs other major certification systems. Journal of Environmental Management, v. 154, p. 266-283, 2015. https://doi.org/10.1016/j.jenvman.2015.02.029

Suzer, O. Analyzing the compliance and correlation of LEED and BREEAM by conducting a criteria-based comparative analysis and evaluating dual-certified projects. Building and Environment, v. 147, p. 158-170, 2019. https://doi.org/10.1016/j.buildenv.2018.09.001

Suzuki, F. S.; Miranda, M. L. J. A história da imigração japonesa e seus descendentes: prática de atividade física e aspectos sócio-culturais. Conexões, v. 6, p. 409-418, 2008. https://doi.org/10.20396/conex.v6i0.8637844

Szymański, P.; Winiecka-Kowalczyk, B.; Nowotarski, P. Multi-criteria certification of buildings in Poland. Technical Transactions Civil Engineering, v. 2-B, p. 81-89, 2014. https://doi.org/10.4467/2353737XCT.14.115.2565

Tham, K. W.; Lee, J.; Lim, S. L. C. Comparing cohort perception and satisfaction moving from non-Green Mark certified to certified buildings. Proceedings of Healthy Buildings Europe, 2017.

Ting, K. H. Tropical green building rating systems: A comparison between Green Building Index and BCA Green Mark. Proceedings of the IEEE Business, Engineering & Industrial Applications Colloquium (BEIAC), p. 263-268, 2012. https://doi.org/10.1109/BEIAC.2012.6226064

Ullah, W.; Noor, S.; Tariq, A. The development of a basic framework for the sustainability of residential buildings in Pakistan. Sustainable Cities and Society, v. 40, p. 365-371, 2018. https://doi.org/10.1016/j.scs.2018.04.009

Varma, C. R. S.; Palaniappan, S. Comparision of green building rating schemes used in North America, Europe and Asia. Habitat International, v. 89, 101989, 2019. https://doi.org/10.1016/j.habitatint.2019.05.008

Vigovskaya, A.; Aleksandrova, O.; Bulgakov, B. Life Cycle Assessment (LCA) of a LEED certified building. IOP Conference Series: Materials Science and Engineering, v. 365, 022007, 2018. https://doi.org/10.1088/1757-899X/365/2/022007

Wang, H.; Wang, T.; Zhang, B.; Li, F.; Toure, B.; Omosa, I. B.; Chiramba, T.; Abdel-Monem, M.; Pradhan, M. Water and wastewater treatment in Africa: Current practices and challenges. Clean - Soil, Air, Water, v. 42, n. 8, p. 1029-1035, 2014. https://doi.org/10.1002/clen.201300208

Wen, B.; Musa, N.; Onn, C. C.; Ramesh, S.; Liang, L.; Wang, W. Evolution of sustainability in global green building rating tools. Journal of Cleaner Production, v. 259, 120912, 2020. https://doi.org/10.1016/j.jclepro.2020.120912

Wijaya, H.; Chiam, B. H.; Ang, K. W.; Xie, Y.; Lai, S. Smart green underground metro station in Singapore. HKIE Transactions, v. 24, n. 2, p. 113-120, 2017. https://doi.org/10.1080/1023697X.2017.1313136

Worden, K.; Hazer, M.; Pyke, C.; Trowbridge, M. Using LEED green rating systems to promote population health. Building and Environment, v. 172, 106550, 2020. https://doi.org/10.1016/j.buildenv.2019.106550

Wu, P.; Song, Y.; Shou, W.; Chi, H.; Chong, H.-Y.; Sutrisna, M. A comprehensive analysis of the credits obtained by LEED 2009 certified green buildings. Renewable and Sustainable Energy Reviews, v. 68, p. 370-379, 2017. https://doi.org/10.1016/j.rser.2016.10.007

Yadegaridehkordi, E.; Hourmand, M.; Nilashi, M.; Alsolami, E.; Samad, S.; Mahmoud, M.; Alarood, A. A.; Zainol, A.; Majeed, H. D.; Shuib, L. Assessment of sustainability indicators for green building manufacturing using fuzzy multi-criteria decision making approach. Journal of Cleaner Production, v. 277, 122905, 2020. https://doi.org/10.1016/j.jclepro.2020.122905

Yas, Z.; Jaafer, K. Factors influencing the spread of green building projects in the UAE. Journal of Building Engineering, v. 27, 100894, 2020. https://doi.org/10.1016/j.jobe.2019.100894

Ye, L.; Cheng, Z.; Wang, Q.; Lin, W.; Ren, F. Overview on Green Building Label in China. Renewable Energy, v. 53, p. 220-229, 2013. https://doi.org/10.1016/j.renene.2012.11.022

Yu, W.; Li, B.; Yang, X.; Wang, Q. A development of a rating method and weighting system for green store buildings in China. Renewable Energy, v. 73, p. 123-129, 2015. https://doi.org/10.1016/j.renene.2014.06.013

Zarchami, E.; Fatourehchi, D. Comparative analysis of rating systems in developing and developed countries: A systematic review and a future agenda towards a region-based sustainability assessment. Journal of Cleaner Production, v. 254, 120024, 2020. https://doi.org/10.1016/j.jclepro.2020.120024

Zarchami, E.; Fatourehchi, D.; Karamloo, M. Establishing a region-based rating system for multi-family residential buildings in Iran: A holistic approach to sustainability. Sustainable Cities and Society, v. 50, 101631, 2019. https://doi.org/10.1016/j.scs.2019.101631

Zhao, D.; Miotto, A. B.; Syal, M.; Chen, J. Framework for benchmarking green building movement: A case of Brazil. Sustainable Cities and Society, v. 48, 101545, 2019. https://doi.org/10.1016/j.scs.2019.101545

Zhao, D.-X.; He, B.-J.; Johnson, C.; Mou, B. Social problems of green buildings: From the humanistic needs to social acceptance. Renewable and Sustainable Energy Reviews, v. 51, p. 1594-1609, 2015. https://doi.org/10.1016/j.rser.2015.07.072

Zou, Y. Certifying green buildings in China: LEED vs. 3-star. Journal of Cleaner Production, v. 208, p. 880-888, 2019. https://doi.org/10.1016/j.jclepro.2018.10.204

Zuo, J.; Zhao, Z.-Y. Green building research - current status and future agenda: A review. Renewable and Sustainable Energy Reviews, v. 30, p. 271-281, 2014. https://doi.org/10.1016/j.rser.2013.10.021


 

ISSN 2359-1412