Revista Brasileira de Gestao Ambiental e Sustentabilidade (ISSN 2359-1412)
Bookmark this page

Home > Edições Anteriores > v. 8, n. 20 (2021) > Nagalli

 

Vol. 8, No 20, p. 1605-1619 - 31 dez. 2021

 

BIM plug-in technology for construction waste quantification



André Nagalli , Luna Ollin Steffen de Oliveira , Annelise Nairne Schamne , Brunno Pereira Barros , Hugo Demay Hochleitner e Charles Jaster de Oliveira

Abstract
Current building management standards demand that construction waste management occurs in the planning phase. This paper presents the development of a plug-in as a BIM tool to predict waste generation. As a research strategy, the plug-in was applied to a single-family housing project, the respective construction wastes were predicted in the BIM technology and compared to the literature. Through waste generation indexes, some planning indicators were calculated. The identified wastes were automatically classified, and a management structure was designed. The study showed that the best results are obtained when the construction waste is estimated from Actual Built Volume instead of Apparent Constructed Volume like the traditional models uses. In conclusion, adopting a plug-in do predict construction waste has proved to be advantageous. A specific advantage of the proposed method is that the plug-in user may adopt their waste generation indexes according to the regional and the production team aspects. The adoption of a plug-in made the acquisition and processing of data fast and versatile.


Keywords
Estimation; Waste prediction; Building information modelling; Construction waste; Demolition waste.

Resumo
Plugin para quantificação de resíduos de construção civil em ambiente BIM. Os padrões atuais de gestão das construções exigem que o planejamento para a gestão dos resíduos de construção ocorra na fase de projeto dos empreendimentos. Este artigo apresenta o desenvolvimento de um plugin a ser utilizado em ambiente BIM para predição da geração de resíduos de construção. Como estratégia de pesquisa, o plugin foi aplicado a um projeto habitacional unifamiliar, os respectivos resíduos de construção foram previstos na tecnologia BIM e comparados à literatura. Por meio de índices de geração de resíduos foram calculados alguns indicadores de planejamento. Os resíduos identificados foram automaticamente classificados, e uma estrutura de gerenciamento de resíduos foi projetada. O estudo mostrou que os melhores resultados são obtidos quando os resíduos de construção são estimados a partir do Volume Real Construído em vez do Volume Construído Aparente, como os modelos tradicionais utilizam. Em conclusão, a adoção de um plugin para estimativa dos resíduos de construção mostrou-se vantajosa. Uma vantagem específica do método proposto é que o usuário do plug-in pode personalizar seus próprios índices de geração de resíduos de acordo com os aspectos regionais e construtivos/produtivos. A adoção de um plugin tornou a aquisição e processamento de dados rápida e versátil.


Palavras-chave
Resíduos de construção e demolição; Estimativa de resíduos; Modelagem da informação da construção.

DOI
10.21438/rbgas(2021)082021

Texto completo
PDF

Referências
Abanda, F. H.; Tah, J. H. M.; Cheung, F. K. T. BIM in off-site manufacturing for buildings. Journal of Building Engineering, v. 14, p. 89-102, 2017. https://doi.org/10.1016/j.jobe.2017.10.002

Abdelhamid, M. S. Assessment of different construction and demolition waste management approaches. HBRC Journal, v. 10, no. 3, p. 317-326, 2014. https://doi.org/10.1016/j.hbrcj.2014.01.003

Ahankoob, A.; Khoshnava, S. M.; Rostami, R.; Preece, C. BIM perspectives on construction waste reduction. Proceeding of the Conference of Management in Construction Research Association (MiCRA), UTM RAZAK School of Engineering and Advanced Technology, p. 195-199, 2012.

Akinade, O. O.; Oyedele, L. O.; Ajayi, S. O.; Bilal, M.; Alaka, H. A.; Owolabi, H. A.; Arawomo, O. O. Designing out construction waste using BIM technology: Stakeholders' expectations for industry deployment. Journal of Cleaner Production, v. 180, p. 375-385, 2018. https://doi.org/10.1016/j.jclepro.2018.01.022

Beazley, S.; Heffernan, E.; Mccarthy, T. J. Enhancing energy efficiency in residential buildings through the use of BIM: The case for embedding parameters during design. Energy Procedia, v. 121, p. 57-64, 2017. https://doi.org/10.1016/j.egypro.2017.07.479

Bergsdal, H.; Bohne, R. A.; Brattebø, H. Projection of construction and demolition waste in Norway. Journal of Industrial Ecology, v. 11, n. 3, p. 27-39, 2007. https://doi.org/10.1162/jiec.2007.1149

Bilal, M.; Oyedele, L. O.; Qadir, J.; Munir, K.; Akinade, O. O.; Ajayi, S.O.; Owolabi, H. A. Analysis of critical features and evaluation of BIM software: Towards a plug-in for construction waste minimization using big data. International Journal of Sustainable Building Technology and Urban Development, v. 6, n. 4, p. 211-228, 2016. https://doi.org/10.1080/2093761X.2015.1116415

Bueno, C.; Fabricio, M. M. Comparative analysis between a complete LCA study and results from a BIM-LCA plug-in. Automation in Construction, v. 90, p. 188-200, 2018.

Burt, J.; Purver, K. Building information modelling for small-scale residential projects. Management, Procurement and Law, v. 167, no. 3, p. 134-140, 2014. https://doi.org/10.1680/mpal.13.00019

Cheng, J. C.; Ma, L. Y. A BIM-based system for demolition and renovation waste estimation and planning. Waste Management, v. 33, no. 6, p. 1539-1551, 2013. https://doi.org/10.1016/j.wasman.2013.01.001

Ma, Y. P.; Lin, M. C.; Hsu, C. C. Enhance architectural heritage conservation using BIM technology. In: Chien, S.; Choo, S.; Schnabel, M. A.; Nakapan, W.; Kim, M. J.; Roudavski, S. (Eds.). Living systems and micro-utopias: Towards continuous designing, proceedings of the 21st International Conference of the Association for Computer-Aided Architectural Design Research in Asia. Hong Kong: CAADRIA, 2016. p. 477-486.

Cochran, K.; Townsend, T., Reinhart, D.; Heck, H. Estimation of regional building-related C&D debris generation and composition: Case study for Florida, US. Waste Management, v. 27, no. 7, p. 921-931, 2007. https://doi.org/10.1016/j.wasman.2006.03.023

Cochran, K. M.; Townsend, T. G. Estimating construction and demolition debris generation using a materials flow analysis approach. Waste Management, v. 30, no. 11, p. 2247-2254, 2010. https://doi.org/10.1016/j.wasman.2010.04.008

Davis, D.; Peters, B. Design ecosystems: Customising the architectural design environment with software plug-ins. Architectural Design, v. 83, no. 2, p. 124-131, 2013. https://doi.org/10.1002/ad.1567

Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM handbook: A guide to building information modeling for owners, managers, designers, engineers and contractors. Hoboken, New Jersey: John Wiley & Sons, 2011.

Guerra, B. C.; Bakchan, A.; Leite, F.; Faust, K. M. BIM-based automated construction waste estimation algorithms: The case of concrete and drywall waste streams. Waste Management, v. 87, p. 825-832, 2019. https://doi.org/10.1016/j.wasman.2019.03.010

Hardin, B.; McCool, D. BIM and construction management: Proven tools, methods, and workflows. Indianapolis, Indiana: John Wiley & Sons, 2015.

Innes, S. Developing tools for designing out waste pre-site and on-site. Proceedings of Minimising Construction Waste Conference: Developing Resource Efficiency and Waste Minimisation in Design and Construction, New Civil Engineer, London, 2004.

Jalali, S. Quantification of construction waste amount. International Technical Conference of Waste, v. 6, p. 1-12, 2007.

Kern, A. P.; Dias, M. F.; Kulakowski, M. P.; Gomes, L. P. Waste generated in high-rise buildings construction: A quantification model based on statistical multiple regression. Waste Management, v. 39, p. 35-44, 2015. https://doi.org/10.1016/j.wasman.2015.01.043

Kofoworola, O. F.; Gheewala, S. H. Estimation of construction waste generation and management in Thailand. Waste Management, v. 29, no. 2, p. 731-738, 2009. https://doi.org/10.1016/j.wasman.2008.07.004

Krygiel, E.; Nies, B. Green BIM: Successful sustainable design with building information modeling. Indianapolis, Indiana: John Wiley & Sons, 2008.

Koutamanis, A. Building information modeling for construction and demolition waste minimization. In: Pacheco-Torgal, F.; Ding, Y.; Colangelo, F.; Tuladhar, R.; Koutamanis, A. Advances in construction and demolition waste recycling. Cambridge: Elsevier, 2020. p. 101-120. https://doi.org/10.1016/B978-0-12-819055-5.00007-3

Lage, I. M.; Abella, F. M.; Herrero, C. V.; Ordóñez, J. L. P. Estimation of the annual production and composition of C&D Debris in Galicia (Spain). Waste Management, v. 30, no. 4, p. 636-645, 2010. https://doi.org/10.1016/j.wasman.2009.11.016

Lau, H. H.; Whyte, A.; Law, P. L. Composition and characteristics of construction waste generated by Residential Housing Project. International Journal of Environmental Research, v. 2, no. 3, p. 261-268, 2008.

Liu, Z.; Osmani, M.; Demian, P.; Baldwin, A. N. The potential use of BIM to aid construction waste minimalisation. Proceedings of the CIB W78-W102 2011: International Conference, Sophia Antipolis, France, 2011. Available from: <https://dspace.lboro.ac.uk/2134/9198>. Accessed on: Apr. 28, 2021.

Liu, Z.; Osmani, M.; Demian, P.; Baldwin, A. N. A BIM-aided construction waste minimisation framework. Automation in Construction, v. 59, p. 1-23, 2015. https://doi.org/10.1016/j.autcon.2015.07.020

Lu, W.; Webster, C.; Chen, K.; Zhang, X.; Chen. X. Computational Building Information Modelling for construction waste management: Moving from rhetoric to reality. Renewable and Sustainable Energy Reviews, v. 68, p. 587-595, 2017a. https://doi.org/10.1016/j.rser.2016.10.029

Lu, Y.; Wu, Z.; Chang, R.; Li, Y. Building Information Modeling (BIM) for green buildings: A critical review and future directions. Automation in Construction, v. 83, p. 134-148, 2017b. https://doi.org/10.1016/j.autcon.2017.08.024

Masudi, A. F.; Che Hassan, C. R.; Mahmood, N. Z.; Mokhtar, S. N.; Sulaiman, N. M. Waste quantification models for estimation of construction and demolition waste generation: A review. International Journal of Global Environmental Issues, v. 12, no. 2/4, p. 269-281, 2012. https://doi.org/10.1504/IJGENVI.2012.049378

Mousa, M.; Luo, X.; McCabe, B. Utilizing BIM and carbon estimating methods for meaningful data representation. Procedia Engineering, v. 145, p. 1242-1249, 2016. https://doi.org/10.1016/j.proeng.2016.04.160

Mueller, M. F.; Esmanioto, F.; Huber, N.; Loures, E. R. Canciglire Jr, O. A systematic literature review of interoperability in the green Building Information Modeling lifecycle. Journal of Cleaner Production, v. 223, p. 397-412, 2019. https://doi.org/10.1016/j.jclepro.2019.03.114

Nagalli, A.; Carvalho, K. Q. A model for estimating construction waste generation in masonry building. Waste and Resource Management, v. 172, p. 1-20, 2018. https://doi.org/10.1680/jwarm.18.00016

Nagalli, A.; Bertol, A. C.; Raffler, A., Santos, J. P. Analysis of between works characteristics and construction waste generation. Proceedings of the 14th International Waste Management and Landfill Symposium, Santa Margherita di Pula (CA), 2013.

Najjar, M.; Figueredo, K.; Palumbo, M.; Haddad, A. Integration of BIM and LCA: Evaluating the environmental impacts of building materials at an early stage of designing a typical office building. Journal of Building Engineering, v. 14, p. 115-126, 2016. https://doi.org/10.1016/j.jobe.2017.10.005

Novaes, M. V.; Mourão, C. A. M. A. Manual de gestão ambiental de resíduos sólidos na construção civil. Fortaleza: Cooperativa de Construção Civil do Estado do Ceará, 2008.

Osmani, M.; Glass, J.; Price, A. D. F. Architects' perspectives on construction waste reduction by design. Waste Management, v. 28, p. 1147-1158, 2008. https://doi.org/10.1016/j.wasman.2007.05.011

Pinto, F. A. R. Resíduos sólidos industriais: caracterização e gestão - o caso do Estado do Ceará. Fortaleza: UFC, 2004. (Dissertação de mestrado).

Poon, C. S.; Ann, T. W.; Ng, L. H. On-site sorting of construction and demolition waste in Hong Kong. Resources, Conservation and Recycling, v. 32, no. 2, p. 157-172, 2001. https://doi.org/10.1016/S0921-3449(01)00052-0

Sacks, R.; Kaner, I.; Eastman, C. M.; Jeong, Y. The Rosewood experiment: Building Information Modeling and interoperability for architectural precast facades. Automation in Construction, v. 19, no. 4, p. 419-432, 2010. https://doi.org/10.1016/j.autcon.2009.11.012

Shi, Y.; Xu, J. BIM-based information system for econo-enviro-friendly end-of-life disposal of construction and demolition waste. Automation in Construction, v. 125, 103611, 2021. https://doi.org/10.1016/j.autcon.2021.103611

Solís-Guzmán, J.; Marrero, M.; Montes-Delgado, M. V.; Ramírez-de-Arellano, A. A Spanish model for quantification and management of construction waste. Waste Management, v. 29, no. 9, p. 2542-2548, 2009. https://doi.org/10.1016/j.wasman.2009.05.009

Won, J.; Cheng, J. C. P.; Lee, G. Quantification of construction waste prevented by BIM-based design validation: Case studies in South Korea. Waste Management, v. 49, p. 170-180, 2016. https://doi.org/10.1016/j.wasman.2015.12.026

Won, J.; Cheng, J. C. Identifying potential opportunities of building information modeling for construction and demolition waste management and minimization. Automation in Construction, v. 79, p. 3-18, 2017. https://doi.org/10.1016/j.autcon.2017.02.002

Wu, Z.; Ann, T. W.; Shen, L.; Liu, G. Quantifying construction and demolition waste: An analytical review. Waste Management, v. 34, no. 9, p. 1683-1692, 2014. https://doi.org/10.1016/j.wasman.2014.05.010

Xu, J.; Shi, Y.; Xie, Y. Zhao, S. A BIM-Based construction and demolition waste information management system for greenhouse gas quantification and reduction. Journal of Cleaner Production, v. 229, p. 308-324, 2019. https://doi.org/10.1016/j.jclepro.2019.04.158

Yost, P. A.; Halstead, J. M. A methodology for quantifying the volume of construction waste. Waste Management & Research, v. 14, no. 5, p. 453-461, 1996. https://doi.org/10.1177/0734242X9601400504


 

ISSN 2359-1412