Vol. 8, No 20, p. 1605-1619 - 31 dez. 2021
BIM plug-in technology for construction waste quantification
André Nagalli , Luna Ollin Steffen de Oliveira , Annelise Nairne Schamne , Brunno Pereira Barros , Hugo Demay Hochleitner e Charles Jaster de Oliveira
Abstract
Current building management standards demand that construction waste management occurs in the planning phase. This paper presents the development of a plug-in as a BIM tool to predict waste generation. As a research strategy, the plug-in was applied to a single-family housing project, the respective construction wastes were predicted in the BIM technology and compared to the literature. Through waste generation indexes, some planning indicators were calculated. The identified wastes were automatically classified, and a management structure was designed. The study showed that the best results are obtained when the construction waste is estimated from Actual Built Volume instead of Apparent Constructed Volume like the traditional models uses. In conclusion, adopting a plug-in do predict construction waste has proved to be advantageous. A specific advantage of the proposed method is that the plug-in user may adopt their waste generation indexes according to the regional and the production team aspects. The adoption of a plug-in made the acquisition and processing of data fast and versatile.
Keywords
Estimation; Waste prediction; Building information modelling; Construction waste;
Demolition waste.
Resumo
Plugin para quantificação de resíduos de construção
civil em ambiente BIM. Os padrões atuais de gestão das construções
exigem que o planejamento para a gestão dos resíduos de construção
ocorra na fase de projeto dos empreendimentos. Este artigo apresenta o desenvolvimento de um
plugin a ser utilizado em ambiente BIM para predição da geração
de resíduos de construção. Como estratégia de pesquisa, o plugin
foi aplicado a um projeto habitacional unifamiliar, os respectivos resíduos de
construção foram previstos na tecnologia BIM e comparados à literatura. Por meio de
índices de geração de resíduos foram calculados alguns indicadores de
planejamento. Os resíduos identificados foram automaticamente classificados, e uma estrutura
de gerenciamento de resíduos foi projetada. O estudo mostrou que os melhores resultados
são obtidos quando os resíduos de construção são estimados a
partir do Volume Real Construído em vez do Volume Construído Aparente, como os modelos
tradicionais utilizam. Em conclusão, a adoção de um plugin para
estimativa dos resíduos de construção mostrou-se vantajosa. Uma vantagem
específica do método proposto é que o usuário do plug-in pode
personalizar seus próprios índices de geração de resíduos de
acordo com os aspectos regionais e construtivos/produtivos. A adoção de um plugin
tornou a aquisição e processamento de dados rápida e versátil.
Palavras-chave
Resíduos de construção e demolição; Estimativa de resíduos;
Modelagem da informação da construção.
DOI
10.21438/rbgas(2021)082021
Texto completo
PDF
Referências
Abanda, F. H.; Tah, J. H. M.; Cheung, F. K. T. BIM in off-site manufacturing for buildings. Journal
of Building Engineering, v. 14, p. 89-102, 2017. https://doi.org/10.1016/j.jobe.2017.10.002
Abdelhamid, M. S. Assessment of different construction and demolition waste management approaches.
HBRC Journal, v. 10, no. 3, p. 317-326, 2014. https://doi.org/10.1016/j.hbrcj.2014.01.003
Ahankoob, A.; Khoshnava, S. M.; Rostami, R.; Preece, C. BIM perspectives on construction waste reduction.
Proceeding of the Conference of Management in Construction Research Association (MiCRA), UTM RAZAK School
of Engineering and Advanced Technology, p. 195-199, 2012.
Akinade, O. O.; Oyedele, L. O.; Ajayi, S. O.; Bilal, M.; Alaka, H. A.; Owolabi, H. A.; Arawomo, O. O.
Designing out construction waste using BIM technology: Stakeholders' expectations for industry
deployment. Journal of Cleaner Production, v. 180, p. 375-385, 2018. https://doi.org/10.1016/j.jclepro.2018.01.022
Beazley, S.; Heffernan, E.; Mccarthy, T. J. Enhancing energy efficiency in residential buildings through
the use of BIM: The case for embedding parameters during design. Energy Procedia, v. 121,
p. 57-64, 2017. https://doi.org/10.1016/j.egypro.2017.07.479
Bergsdal, H.; Bohne, R. A.; Brattebø, H. Projection of construction and demolition waste in Norway.
Journal of Industrial Ecology, v. 11, n. 3, p. 27-39, 2007. https://doi.org/10.1162/jiec.2007.1149
Bilal, M.; Oyedele, L. O.; Qadir, J.; Munir, K.; Akinade, O. O.; Ajayi, S.O.; Owolabi, H. A. Analysis of
critical features and evaluation of BIM software: Towards a plug-in for construction waste minimization
using big data. International Journal of Sustainable Building Technology and Urban Development,
v. 6, n. 4, p. 211-228, 2016. https://doi.org/10.1080/2093761X.2015.1116415
Bueno, C.; Fabricio, M. M. Comparative analysis between a complete LCA study and results from a BIM-LCA
plug-in. Automation in Construction, v. 90, p. 188-200, 2018.
Burt, J.; Purver, K. Building information modelling for small-scale residential projects. Management,
Procurement and Law, v. 167, no. 3, p. 134-140, 2014. https://doi.org/10.1680/mpal.13.00019
Cheng, J. C.; Ma, L. Y. A BIM-based system for demolition and renovation waste estimation and planning.
Waste Management, v. 33, no. 6, p. 1539-1551, 2013. https://doi.org/10.1016/j.wasman.2013.01.001
Ma, Y. P.; Lin, M. C.; Hsu, C. C. Enhance architectural heritage conservation using BIM technology.
In: Chien, S.; Choo, S.; Schnabel, M. A.; Nakapan, W.; Kim, M. J.; Roudavski, S. (Eds.). Living
systems and micro-utopias: Towards continuous designing, proceedings of the 21st International
Conference of the Association for Computer-Aided Architectural Design Research in Asia. Hong Kong:
CAADRIA, 2016. p. 477-486.
Cochran, K.; Townsend, T., Reinhart, D.; Heck, H. Estimation of regional building-related C&D
debris generation and composition: Case study for Florida, US. Waste Management, v. 27,
no. 7, p. 921-931, 2007. https://doi.org/10.1016/j.wasman.2006.03.023
Cochran, K. M.; Townsend, T. G. Estimating construction and demolition debris generation using a
materials flow analysis approach. Waste Management, v. 30, no. 11, p. 2247-2254, 2010.
https://doi.org/10.1016/j.wasman.2010.04.008
Davis, D.; Peters, B. Design ecosystems: Customising the architectural design environment with
software plug-ins. Architectural Design, v. 83, no. 2, p. 124-131, 2013. https://doi.org/10.1002/ad.1567
Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM handbook: A guide to building information
modeling for owners, managers, designers, engineers and contractors. Hoboken, New Jersey: John Wiley
& Sons, 2011.
Guerra, B. C.; Bakchan, A.; Leite, F.; Faust, K. M. BIM-based automated construction waste estimation
algorithms: The case of concrete and drywall waste streams. Waste Management, v. 87,
p. 825-832, 2019. https://doi.org/10.1016/j.wasman.2019.03.010
Hardin, B.; McCool, D. BIM and construction management: Proven tools, methods, and workflows.
Indianapolis, Indiana: John Wiley & Sons, 2015.
Innes, S. Developing tools for designing out waste pre-site and on-site. Proceedings of Minimising
Construction Waste Conference: Developing Resource Efficiency and Waste Minimisation in Design and
Construction, New Civil Engineer, London, 2004.
Jalali, S. Quantification of construction waste amount. International Technical Conference of
Waste, v. 6, p. 1-12, 2007.
Kern, A. P.; Dias, M. F.; Kulakowski, M. P.; Gomes, L. P. Waste generated in high-rise buildings
construction: A quantification model based on statistical multiple regression. Waste
Management, v. 39, p. 35-44, 2015. https://doi.org/10.1016/j.wasman.2015.01.043
Kofoworola, O. F.; Gheewala, S. H. Estimation of construction waste generation and management in
Thailand. Waste Management, v. 29, no. 2, p. 731-738, 2009. https://doi.org/10.1016/j.wasman.2008.07.004
Krygiel, E.; Nies, B. Green BIM: Successful sustainable design with building information
modeling. Indianapolis, Indiana: John Wiley & Sons, 2008.
Koutamanis, A. Building information modeling for construction and demolition waste minimization.
In: Pacheco-Torgal, F.; Ding, Y.; Colangelo, F.; Tuladhar, R.; Koutamanis, A. Advances in
construction and demolition waste recycling. Cambridge: Elsevier, 2020. p. 101-120.
https://doi.org/10.1016/B978-0-12-819055-5.00007-3
Lage, I. M.; Abella, F. M.; Herrero, C. V.; Ordóñez, J. L. P. Estimation of the
annual production and composition of C&D Debris in Galicia (Spain). Waste Management,
v. 30, no. 4, p. 636-645, 2010. https://doi.org/10.1016/j.wasman.2009.11.016
Lau, H. H.; Whyte, A.; Law, P. L. Composition and characteristics of construction waste generated
by Residential Housing Project. International Journal of Environmental Research, v. 2,
no. 3, p. 261-268, 2008.
Liu, Z.; Osmani, M.; Demian, P.; Baldwin, A. N. The potential use of BIM to aid construction waste
minimalisation. Proceedings of the CIB W78-W102 2011: International Conference, Sophia Antipolis,
France, 2011. Available from: <https://dspace.lboro.ac.uk/2134/9198>.
Accessed on: Apr. 28, 2021.
Liu, Z.; Osmani, M.; Demian, P.; Baldwin, A. N. A BIM-aided construction waste minimisation framework.
Automation in Construction, v. 59, p. 1-23, 2015. https://doi.org/10.1016/j.autcon.2015.07.020
Lu, W.; Webster, C.; Chen, K.; Zhang, X.; Chen. X. Computational Building Information Modelling for
construction waste management: Moving from rhetoric to reality. Renewable and Sustainable Energy
Reviews, v. 68, p. 587-595, 2017a. https://doi.org/10.1016/j.rser.2016.10.029
Lu, Y.; Wu, Z.; Chang, R.; Li, Y. Building Information Modeling (BIM) for green buildings: A critical
review and future directions. Automation in Construction, v. 83, p. 134-148, 2017b. https://doi.org/10.1016/j.autcon.2017.08.024
Masudi, A. F.; Che Hassan, C. R.; Mahmood, N. Z.; Mokhtar, S. N.; Sulaiman, N. M. Waste quantification
models for estimation of construction and demolition waste generation: A review. International
Journal of Global Environmental Issues, v. 12, no. 2/4, p. 269-281, 2012. https://doi.org/10.1504/IJGENVI.2012.049378
Mousa, M.; Luo, X.; McCabe, B. Utilizing BIM and carbon estimating methods for meaningful data
representation. Procedia Engineering, v. 145, p. 1242-1249, 2016. https://doi.org/10.1016/j.proeng.2016.04.160
Mueller, M. F.; Esmanioto, F.; Huber, N.; Loures, E. R. Canciglire Jr, O. A systematic literature
review of interoperability in the green Building Information Modeling lifecycle. Journal of
Cleaner Production, v. 223, p. 397-412, 2019. https://doi.org/10.1016/j.jclepro.2019.03.114
Nagalli, A.; Carvalho, K. Q. A model for estimating construction waste generation in masonry
building. Waste and Resource Management, v. 172, p. 1-20, 2018. https://doi.org/10.1680/jwarm.18.00016
Nagalli, A.; Bertol, A. C.; Raffler, A., Santos, J. P. Analysis of between works characteristics
and construction waste generation. Proceedings of the 14th International Waste Management and
Landfill Symposium, Santa Margherita di Pula (CA), 2013.
Najjar, M.; Figueredo, K.; Palumbo, M.; Haddad, A. Integration of BIM and LCA: Evaluating the
environmental impacts of building materials at an early stage of designing a typical office
building. Journal of Building Engineering, v. 14, p. 115-126, 2016. https://doi.org/10.1016/j.jobe.2017.10.005
Novaes, M. V.; Mourão, C. A. M. A. Manual de gestão ambiental de resíduos
sólidos na construção civil. Fortaleza: Cooperativa de
Construção Civil do Estado do Ceará, 2008.
Osmani, M.; Glass, J.; Price, A. D. F. Architects' perspectives on construction waste reduction
by design. Waste Management, v. 28, p. 1147-1158, 2008. https://doi.org/10.1016/j.wasman.2007.05.011
Pinto, F. A. R. Resíduos sólidos industriais: caracterização e
gestão - o caso do Estado do Ceará. Fortaleza: UFC, 2004. (Dissertação
de mestrado).
Poon, C. S.; Ann, T. W.; Ng, L. H. On-site sorting of construction and demolition waste in Hong Kong.
Resources, Conservation and Recycling, v. 32, no. 2, p. 157-172, 2001. https://doi.org/10.1016/S0921-3449(01)00052-0
Sacks, R.; Kaner, I.; Eastman, C. M.; Jeong, Y. The Rosewood experiment: Building Information Modeling
and interoperability for architectural precast facades. Automation in Construction, v. 19,
no. 4, p. 419-432, 2010. https://doi.org/10.1016/j.autcon.2009.11.012
Shi, Y.; Xu, J. BIM-based information system for econo-enviro-friendly end-of-life disposal of
construction and demolition waste. Automation in Construction, v. 125, 103611, 2021.
https://doi.org/10.1016/j.autcon.2021.103611
Solís-Guzmán, J.; Marrero, M.; Montes-Delgado, M. V.; Ramírez-de-Arellano,
A. A Spanish model for quantification and management of construction waste. Waste Management,
v. 29, no. 9, p. 2542-2548, 2009. https://doi.org/10.1016/j.wasman.2009.05.009
Won, J.; Cheng, J. C. P.; Lee, G. Quantification of construction waste prevented by BIM-based design
validation: Case studies in South Korea. Waste Management, v. 49, p. 170-180, 2016.
https://doi.org/10.1016/j.wasman.2015.12.026
Won, J.; Cheng, J. C. Identifying potential opportunities of building information modeling for
construction and demolition waste management and minimization. Automation in Construction,
v. 79, p. 3-18, 2017. https://doi.org/10.1016/j.autcon.2017.02.002
Wu, Z.; Ann, T. W.; Shen, L.; Liu, G. Quantifying construction and demolition waste: An analytical
review. Waste Management, v. 34, no. 9, p. 1683-1692, 2014. https://doi.org/10.1016/j.wasman.2014.05.010
Xu, J.; Shi, Y.; Xie, Y. Zhao, S. A BIM-Based construction and demolition waste information management
system for greenhouse gas quantification and reduction. Journal of Cleaner Production, v. 229,
p. 308-324, 2019. https://doi.org/10.1016/j.jclepro.2019.04.158
Yost, P. A.; Halstead, J. M. A methodology for quantifying the volume of construction waste.
Waste Management & Research, v. 14, no. 5, p. 453-461, 1996. https://doi.org/10.1177/0734242X9601400504
ISSN 2359-1412