Revista Brasileira de Gestao Ambiental e Sustentabilidade (ISSN 2359-1412)
Bookmark this page

Home > Edições Anteriores > v. 8, n. 20 (2021) > Noronha

 

Vol. 8, No 20, p. 1295-1313 - 31 dez. 2021

 

The relationship between hydrogen and its application in wind energy: A systematic review



Matheus Eurico Soares de Noronha e André Themoteo da Silva Melo

Abstract
The aim of this study was to map papers about the use of hydrogen as a fuel and its association with wind energy under siege in two databases (Web of Science and Scopus) to provide insights about this topic and verify its current context. This study was a systematic literature review and content analysis of 87 papers from Web of Science and Scopus database. The papers were analyzed from descriptive, bibliographic, methodologic, results and citation characteristics. The publications about this theme have been mostly developed using mixed research models (quantitative and qualitative), especially due to the need to validate these experimental models for practical application, can be classified into four central clusters: 1) Green hydrogen; 2) Economic Viability and Costs; 3) New Technologies; and 4) Public Policies and Case Studies, with different focuses that converging to the same objective, the use of hydrogen as an ecologically correct and profitable fuel to serve the energy production system from wind plants. From the results obtained, it is observed that the use of hydrogen as a fuel, and wind energy, are themes that have been relatively significant in recent years within the environment of industrial innovation, presenting an eclecticism, where several countries in a pulverized form are increasingly seeking invest in these technologies, which is expressed through the substantial growth in the number of papers published about these themes since 2000s.


Keywords
Fuel; Energy; Wind Energy; Hydrogen.

Resumo
Relação entre o hidrogênio e sua aplicação na energia eólica: uma revisão sistemática. O objetivo deste estudo foi mapear artigos sobre o uso do hidrogênio como combustível e a sua associação com a energia eólica situados em duas bases de dados (Web of Science e Scopus) a fim de apresentar caminhos para pesquisas na área e o contexto atual da produção científica desta. O estudo consistiu na revisão sistemática da literatura através da análise do conteúdo de 87 artigos provenientes dos bancos de dados da Web of Science e da Scopus. Os artigos foram analisados a partir de características descritivas, bibliográficas, metodológicas, de resultados e de citações. As publicações acerca deste tema têm sido majoritariamente desenvolvidas com modelos de pesquisa mistos (quantitativo e qualitativo), especialmente devido à necessidade de validar estes modelos experimentais para aplicação prática, podendo ser classificados em quatro temáticas centrais: 1) Green hydrogen; 2) Viabilidade econômica e custos; 3) Novas tecnologias; e 4) Políticas públicas e estudos de caso, com focos diferentes que acabam convergindo para um objetivo comum, o uso do hidrogênio como combustível ecologicamente correto e rentável para o atendimento do sistema de produção de energia a partir de usinas eólicas. O uso do hidrogênio como combustível, e a própria energia eólica, são temáticas relativamente pautadas de forma significativa há pouco tempo dentro do ambiente de inovação industrial, apresentando um ecleticismo significativo, onde diversos países de forma pulverizada estão procurando cada vez mais investir nestas tecnologias, o que é expresso por meio do substancial crescimento do número de artigos publicados acerca destas temáticas a partir dos anos 2000.


Palavras-chave
Combustível; Energia; Energia eólica; Hidrogênio.

DOI
10.21438/rbgas(2021)082003

Texto completo
PDF

Referências
Aiche-Hamane, L.; Belhamel, M.; Benyoucef, B.; Hamane, M. Feasibility study of hydrogen production from wind power in the Region of Ghardaia. International Journal of Hydrogen Energy, v. 34, no. 11, p. 4947-4952, 2009. https://doi.org/10.1016/j.ijhydene.2008.12.037

Al Zohbi, G.; Hendrick, P.; Bouillard, P. Wind characteristics and wind energy potential analysis in five sites in Lebanon. International Journal of Hydrogen Energy, v. 40, no. 44, p. 15311-15319, 2015. https://doi.org/10.1016/j.ijhydene.2015.04.115

Alavi, O.; Mostafaeipour, A.; Qolipour, M. Analysis of hydrogen production from wind energy in the southeast of Iran. International Journal of Hydrogen Energy, v. 41, no. 34, p. 15158-15171, 2016. https://doi.org/10.1016/j.ijhydene.2016.06.092

Al-Sharafi, A.; Sahin, A. Z.; Ayar, T.; Yilbas, B. S. Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia. Renewable and Sustainable Energy Reviews, v. 69, p. 33-49, 2017. https://doi.org/10.1016/j.rser.2016.11.157

Amica, G.; Arneodo Larochette, P.; Gennari, F. C. Light metal hydride-based hydrogen storage system: Economic assessment in Argentina. International Journal of Hydrogen Energy, v. 45, no. 38, p. 18789-18801, 2020. https://doi.org/10.1016/j.ijhydene.2020.05.036

Armijo, J.; Philibert, C. Flexible production of green hydrogen and ammonia from variable solar and wind energy: Case study of Chile and Argentina. International Journal of Hydrogen Energy, v. 45, no. 3, p. 1541-1558, 2019. https://doi.org/10.1016/j.ijhydene.2019.11.028

Ashrafi, Z. N.; Ghasemian, M.; Shahrestani, M. I.; Khodabandeh, E.; Sedaghat, A. Evaluation of hydrogen production from harvesting wind energy at high altitudes in Iran by three extrapolating Weibull methods. International Journal of Hydrogen Energy, v. 43, no. 6, p. 3110-3132, 2018. https://doi.org/10.1016/j.ijhydene.2017.12.154

Ayodele, T. R.; Munda, J. L. Potential and economic viability of green hydrogen production by water electrolysis using wind energy resources in South Africa. International Journal of Hydrogen Energy, v. 44, no. 33, p. 17669-17687, 2019a. https://doi.org/10.1016/j.ijhydene.2019.05.077

Ayodele, T. R.; Munda, J. L. The potential role of green hydrogen production in the South Africa energy mix. Journal of Renewable and Sustainable Energy, v. 11, no. 4, 044301, 2019b. https://doi.org/10.1063/1.5089958

Balat, H. Wind energy potential in Turkey. Energy Exploration & Exploitation, v. 23, no. 1, p. 51-59, 2005. https://doi.org/10.1260/0144-5987.23.1.51

Berg, T. L.; Apostolou, D.; Enevoldsen, P. Analysis of the wind energy market in Denmark and future interactions with an emerging hydrogen market. International Journal of Hydrogen Energy, v. 46, no. 1, p. 146-156, 2020. https://doi.org/10.1016/j.ijhydene.2020.09.166

Bhogilla, S. S.; Ito, H.; Segawa, T.; Kato, A.; Nakano, A. Experimental study on laboratory scale Totalized Hydrogen Energy Utilization System using wind power data. International Journal of Hydrogen Energy, v. 42, no. 19, p. 13827-13838, 2017. https://doi.org/10.1016/j.ijhydene.2016.12.125

Blal, M.; Belasri, A.; Benatillah, A.; Hamouda, M.; Lachtar, S.; Sahouane, N.; Labiri, S.; Mostefaoui, M. Assessment of solar and wind energy as motive for potential hydrogen production of Algeria country; development a methodology for uses hydrogen-based fuel cells. International Journal of Hydrogen Energy, v. 43, no. 19, p. 9192-9210, 2018. https://doi.org/10.1016/j.ijhydene.2018.03.200

Braun, G. W.; Suchard, A.; Martin, J. Hydrogen and electricity as carriers of solar and wind energy for the 1990s and beyond. Solar Energy Materials, v. 24, no. 1/4, p. 62-75, 1991. https://doi.org/10.1016/0165-1633(91)90048-P

Burkhardt, J.; Patyk, A.; Tanguy, P.; Retzke, C. Hydrogen mobility from wind energy: A life cycle assessment focusing on the fuel supply. Applied Energy, v. 181, p. 54-64, 2016. https://doi.org/10.1016/j.apenergy.2016.07.104

Carr, S. J. W.; Thanapalan, K. K. T.; Zhang, F.; Guwy, A. J.; Maddy, J.; Gusig, L.-O.; Premier, G. C. Integration of wind power and hydrogen hybrid electric vehicles into electric grids. Smart Innovation, Systems and Technologies, v. 2, p. 261-270, 2013. https://doi.org/10.1007/978-3-642-36645-1_24

Dagdougui, H.; Ouammi, A.; Sacile, R. A regional decision support system for onsite renewable hydrogen production from solar and wind energy sources. International Journal of Hydrogen Energy, v. 36, no. 22, p. 14324-14334, 2011. https://doi.org/10.1016/j.ijhydene.2011.08.050

Dagdougui, H.; Ouammi, A.; Sacile, R. Modelling and control of hydrogen and energy flows in a network of green hydrogen refuelling stations powered by mixed renewable energy systems. International Journal of Hydrogen Energy, v. 37, no. 6, p. 5360-5371, 2012. https://doi.org/10.1016/j.ijhydene.2011.07.096

Dienhart, H.; Siegel, A. Hydrogen storage in isolated electrical energy systems with photovoltaic and wind energy. International Journal of Hydrogen Energy, v. 19, no. 1, p. 61-66, 1994. https://doi.org/10.1016/0360-3199(94)90178-3

Douak, M.; Settou, N. Estimation of hydrogen production using wind energy in Algeria. Energy Procedia, v. 74, p. 981-990, 2015. https://doi.org/10.1016/j.egypro.2015.07.829

Fasihi, M.; Breyer, C. Base load electricity and hydrogen supply based on hybrid PV-wind power plants. Journal of Cleaner Production, v. 243, 118466, 2019. https://doi.org/10.1016/j.jclepro.2019.118466

Fernández-Guillamón, A.; Das, K.; Cutululis, N. A.; Molina-García, Á. Offshore wind power integration into future power systems: Overview and trends. Journal of Marine Science and Engineering, v. 7, no. 11, 399, 2019. https://doi.org/10.3390/jmse7110399

Franzen, S.; Madlener, R. Optimal expansion of a hydrogen storage system for wind power (H2-WESS): A real options analysis. Energy Procedia, v. 105, p. 3816-3823, 2017. https://doi.org/10.1016/j.egypro.2017.03.891

Früh, W.-G. From local wind energy resource to national wind power productiono. AIMS Energy, v. 3, no. 1, p. 101-120, 2015. https://doi.org/10.3934/energy.2015.1.101

Garmsiri, S.; Rosen, M.; Smith, G. Integration of wind energy, hydrogen and natural gas pipeline systems to meet community and transportation energy needs: A parametric study. Sustainability, v. 6, no. 5, p. 2506-2526, 2014. https://doi.org/10.3390/su6052506

Gazey, R.; Salman, S. K.; Aklil-D'Halluin, D. D. A field application experience of integrating hydrogen technology with wind power in a remote island location. Journal of Power Sources, v. 157, no. 2, p. 841-847, 2006. https://doi.org/10.1016/j.jpowsour.2005.11.084

Genç, M. S.; Çelik, M.; Karasu, İ. A review on wind energy and wind-hydrogen production in Turkey: A case study of hydrogen production via electrolysis system supplied by wind energy conversion system in Central Anatolian Turkey. Renewable and Sustainable Energy Reviews, v. 16, no. 9, p. 6631-6646, 2012. https://doi.org/10.1016/j.rser.2012.08.011

Gondal, I. A.; Masood, S. A.; Khan, R. Green hydrogen production potential for developing a hydrogen economy in Pakistan. International Journal of Hydrogen Energy, v. 43, no. 12, p. 6011-6039, 2018. https://doi.org/10.1016/j.ijhydene.2018.01.113

Gondal, I. Offshore renewable energy resources and their potential in a green Hydrogen supply chain through power-to-gas. Sustainable Energy & Fuels, v. 3, p. 1468-1489, 2019. https://doi.org/10.1039/C8SE00544C

González, A.; McKeogh, E.; Gallachóir, B. Ó. The role of hydrogen in high wind energy penetration electricity systems: The Irish case. Renewable Energy, v. 29, no. 4, p. 471-489, 2004. https://doi.org/10.1016/j.renene.2003.07.006

González-Aparicio, I.; Kapetaki, Z.; Tzimas, E. Wind energy and carbon dioxide utilisation as an alternative business model for energy producers: A case study in Spain. Applied Energy, v. 222, p. 216-227, 2018. https://doi.org/10.1016/j.apenergy.2018.03.114

Guandalini, G.; Campanari, S.; Romano, M. C. Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment. Applied Energy, v. 147, p. 117-130, 2015. https://doi.org/10.1016/j.apenergy.2015.02.055

Hexu, S.; Zheng, L.; Aibing, C.; Yan, Z.; Chunxiao, M. Current status and development trend of hydrogen production technology by wind power. Transactions of China Electrotechnical Society, v. 34, no. 19, p. 4071-4083, 2019. https://doi.org/10.1177/0144598718787294

Huang, Y. S.; Liu, S. J. Chinese green hydrogen production potential development: A provincial case study. IEEE ACCESS, v. 8, p. 171968-171976, 2020. https://doi.org/10.1109/access.2020.3024540

Ishaq, H.; Dincer, I. A comparative evaluation of OTEC, solar and wind energy based systems for clean hydrogen production. Journal of Cleaner Production, v. 246, 118736, 2019. https://doi.org/10.1016/j.jclepro.2019.118736

Ishaq, H.; Dincer, I.; Naterer, G. F. Performance investigation of an integrated wind energy system for co-generation of power and hydrogen. International Journal of Hydrogen Energy, v. 43, no. 19, p. 9153-9164, 2018. https://doi.org/10.1016/j.ijhydene.2018.03.139

Ishaq, H.; Dincer, I. Dynamic analysis of a new solar-wind energy-based cascaded system for hydrogen to ammonia. International Journal of Hydrogen Energy, v. 45, no. 38, p. 18895-18911, 2020. https://doi.org/10.1016/j.ijhydene.2020.04.149

Jahangiri, M.; Nematollahi, O.; Haghani, A.; Raiesi, H. A.; Alidadi Shamsabadi, A. An optimization of energy cost of clean hybrid solar-wind power plants in Iran. International Journal of Green Energy, v. 16, no. 15, p. 1-14, 2019. https://doi.org/10.1080/15435075.2019.1671415

Kaldellis, J. K.; Kavadias, K.; Zafirakis, D. The role of hydrogen-based energy storage in the support of large-scale wind energy integration in island grids. International Journal of Sustainable Energy, v. 34, no. 3/4, p. 188-201, 2013. https://doi.org/10.1080/14786451.2013.846342

Kameyama, H.; Yoshizaki, K.; Yasuda, I. Carbon capture and recycle by integration of CCS and green hydrogen. Energy Procedia, v. 4, p. 2669-2676, 2011. https://doi.org/10.1016/j.egypro.2011.02.167

Khaitan, S. K.; Raju, M.; McCalley, J. D. Design of a novel and efficient hydrogen compressor for wind energybased storage systems. International Journal of Hydrogen Energy, v. 40, no. 3, p. 1379-1387, 2015. https://doi.org/10.1016/j.ijhydene.2014.11.066

Kılkış, B. Exergetic comparison of wind energy storage with ice making cycle versus mini-hydrogen economy cycle in off-grid district cooling. International Journal of Hydrogen Energy, v. 42, no. 28, p. 17571-17582, 2017. https://doi.org/10.1016/j.ijhydene.2017.03.105

Kodicherla, S. P. K.; Kan, C.; Nanduri, P. M. B. R. K. Likelihood of wind energy assisted hydrogen production in three selected stations of Fiji Islands. International Journal of Ambient Energy, v. 41, no. 7, p. 1-10, 2018. https://doi.org/10.1080/01430750.2018.1492444

Koroneos, C.; Katopodi, E. Maximization of wind energy penetration with the use of H2 production: An exergy approach. Renewable and Sustainable Energy Reviews, v. 15, no. 1, p. 648-656, 2011. https://doi.org/10.1016/j.rser.2010.06.022

Kudria, S.; Ivanchenko, I.; Tuchynskyi, B.; Petrenko, K.; Karmazin, O.; Riepkin, O. Resource potential for wind-hydrogen power in Ukraine. International Journal of Hydrogen Energy, v. 46, no. 1, p. 157-168, 2020. https://doi.org/10.1016/j.ijhydene.2020.09.211

Lee, J.-Y.; An, S.; Cha, K.; Hur, T. Life cycle environmental and economic analyses of a hydrogen station with wind energy. International Journal of Hydrogen Energy, v. 35, no. 6, p. 2213-2225, 2010. https://doi.org/10.1016/j.ijhydene.2009.12.082

Lepszy, S.; Chmielniak, T.; Monka, P. Storage system for electricity obtained from wind power plants using underground hydrogen reservoir. Journal of Power Technologies, v. 97, no. 1, p. 61-68, 2017.

Li, Z.; Guo, P.; Han, R.; Sun, H. Current status and development trend of wind power generation-based hydrogen production technology. Energy Exploration & Exploitation, v. 37, no. 1, 014459871878729, 2018. https://doi.org/10.1177/0144598718787294

Martín, M. Methodology for solar and wind energy chemical storage facilities design under uncertainty: Methanol production from CO2 and hydrogen. Computers & Chemical Engineering, v. 92, p. 43-54, 2016. https://doi.org/10.1016/j.compchemeng.2016.05.001

Martín, M.; Grossmann, I. E. Optimal integration of a self sustained algae based facility with solar and/or wind energy. Journal of Cleaner Production, v. 145, p. 336-347, 2017. https://doi.org/10.1016/j.jclepro.2017.01.051

Mönnich, K.; Neumann, T.; Strack, M.; Braess, H.; Scheuerer, K. Large scale hydrogen production from wind energy in Patagonia, Argentina. Wind Engineering, v. 28, no. 5, p. 565-575, 2004. https://doi.org/10.1260/0309524043028028

Mostafaeipour, A.; Dehshiri, S. J. H.; Dehshiri, S. S. H.; Jahangiri, M. Prioritization of potential locations for harnessing wind energy to produce hydrogen in Afghanistan. International Journal of Hydrogen Energy, v. 45, no. 58, p. 33169-33184, 2020. https://doi.org/10.1016/j.ijhydene.2020.09.135

Mostafaeipour, A.; Khayyami, M.; Sedaghat, A.; Mohammadi, K.; Shamshirband, S.; Sehati, M.-A.; Gorakifard, E. Evaluating the wind energy potential for hydrogen production: A case study. International Journal of Hydrogen Energy, v. 41, no. 15, p. 6200-6210, 2016. https://doi.org/10.1016/j.ijhydene.2016.03.038

Müller, S.; Groß, P.; Rauch, R.; Zweiler, R.; Aichernig, C.; Fuchs, M.; Hofbauer, H. Production of diesel from biomass and wind power: Energy storage by the use of the Fischer-Tropsch Process. Biomass Conversion and Biorefinery, v. 8, no. 2, p. 275-282, 2017. https://doi.org/10.1007/s13399-017-0287-1

Muyeen, S. M.; Takahashi, R.; Tamura, J. Wind power and hydrogen generation system with cooperatively controlled three-level NPC-VSC based energy capacitor. European Transactions on Electrical Power, v. 20, no. 8, p. 1071-1081, 2010. https://doi.org/10.1002/etep.385

Nadaleti, W. C.; Borges dos Santos, G.; Lourenço, V. A. The potential and economic viability of hydrogen production from the use of hydroelectric and wind farms surplus energy in Brazil: A national and pioneering analysis. International Journal of Hydrogen Energy, v. 45, p. 1373-1384, 2020. https://doi.org/10.1016/j.ijhydene.2019.08.199

Nadaleti, W. C.; Santos, G. B.; Lourenço, V. A. Integration of renewable energies using the surplus capacity of wind farms to generate H2 and electricity in Brazil and in the Rio Grande do Sul State: Energy planning and avoided emissions within a circular economy. International Journal of Hydrogen Energy, v. 45, no. 46, p. 24190-24202, 2020. https://doi.org/10.1016/j.ijhydene.2020.06.226

Nagasawa, K.; Davidson, F. T.; Lloyd, A. C.; Webber, M. E. Impacts of renewable hydrogen production from wind energy in electricity markets on potential hydrogen demand for light-duty vehicles. Applied Energy, v. 235, p. 1001-1016, 2019. https://doi.org/10.1016/j.apenergy.2018.10.067

Nicita, A.; Maggio, G.; Andaloro, A. P. F.; Squadrito, G. Green hydrogen as feedstock: Financial analysis of a photovoltaic-powered electrolysis plant. International Journal of Hydrogen Energy, v. 45, no. 20, p. 11395-11408, 2020. https://doi.org/10.1016/j.ijhydene.2020.02.062

Olateju, B.; Kumar, A. Hydrogen production from wind energy in Western Canada for upgrading bitumen from oil sands. Energy, v. 36, no. 11, p. 6326-6339, 2011. https://doi.org/10.1016/j.energy.2011.09.045

Olateju, B.; Monds, J.; Kumar, A. Large scale hydrogen production from wind energy for the upgrading of bitumen from oil sands. Applied Energy, v. 118, p. 48-56, 2014. https://doi.org/10.1016/j.apenergy.2013.12.013

Olmos, F.; Hennessy, B. P.; Manousiouthakis, I. V.; Somiari, I.; Manousiouthakis, V. I. Thermodynamic feasibility analysis of a water-splitting thermochemical cycle based on sodium carbonate decomposition. International Journal of Hydrogen Energy, v. 44, p. 4041-4061, 2019. https://doi.org/10.1016/j.ijhydene.2018.11.153

Ostadi, M.; Paso, K. G.; Rodriguez-Fabia, S.; Oi, L. E.; Manenti, F.; Hillestad, M. Process integration of green hydrogen: Decarbonization of chemical industries. Energies, v. 13, 4859, 2020. https://doi.org/10.3390/en13184859

Proost, J. Critical assessment of the production scale required for fossil parity of green electrolytic hydrogen. International Journal of Hydrogen Energy, v. 45, no. 35, p. 17067-17075, 2020. https://doi.org/10.1016/j.ijhydene.2020.04.259

Rabiee, A.; Keane, A.; Soroudi, A. Technical barriers for harnessing the green hydrogen: A power system perspective. Renewable Energy, v. 163, p. 1580-1587, 2021. https://doi.org/10.1016/j.renene.2020.10.051

Ramos, V.; Iglesias, G. Wind power viability on a small island. International Journal of Green Energy, v. 11, no. 7 p. 741-760, 2014. https://doi.org/10.1080/15435075.2013.823434

Realpe-Jiménez, A.; Orozco-Agamez, J.; Acevedo-Morantes, M. Wind power for hydrogen production using a spiral electrolyzer. International Journal of Applied Engineering Research, v. 10, p. 9175-9183, 2015.

Rezaei, M.; Mostafaeipour, A.; Qolipour, M.; Arabnia, H.-R. Hydrogen production using wind energy from sea water: A case study on Southern and Northern coasts of Iran. Energy & Environment, v. 29, no. 3, p. 333-357, 2018. https://doi.org/10.1177/0958305X17750052

Rezaei, M.; Khozani, N. N.; Jafari, N. Wind energy utilization for hydrogen production in an underdeveloped country: An economic investigation. Renewable Energy, v. 147, no. 1, p. 1044-1057, 2019. https://doi.org/10.1016/j.renene.2019.09.079

Safari, F.; Dincer, I. Assessment and optimization of an integrated wind power system for hydrogen and methane production. Energy Conversion and Management, v. 177, p. 693-703, 2018. https://doi.org/10.1016/j.enconman.2018.09.071

Sarrias-Mena, R.; Fernández-Ramírez, L. M.; García-Vázquez, C. A.; Jurado, F. Electrolyzer models for hydrogen production from wind energy systems. International Journal of Hydrogen Energy, v. 40, no. 7, p. 2927-2938, 2015. https://doi.org/10.1016/j.ijhydene.2014.12.125

Schenk, N. J.; Moll, H. C.; Potting, J.; Benders, R. M. J. Wind energy, electricity, and hydrogen in The Netherlands. Energy, v. 32, no. 10, p. 1960-1971, 2007. https://doi.org/10.1016/j.energy.2007.02.002

Sherif, S. A.; Barbir, F.; Veziroglu, T. N. Wind energy and the hydrogen economy-review of the technology. Solar Energy, v. 78, no. 5, p. 647-660, 2005. https://doi.org/10.1016/j.solener.2005.01.002

Sheth, J. P.; Grewal, G. S.; Srinet, V.; Govindan, T. P. Wind hydrogen based distributed energy system for rural India. Water and Energy International, v. 68, no. 2, p. 42-45, 2011.

Shi, S. Y.; Cheng, F.; Nayel, M. Discuss hydrogen production in Jiangsu Province using non-grid-connected offshore wind power. Applied Mechanics and Materials, v. 291/294, p. 2102-2108, 2013. https://doi.org/10.4028/www.scientific.net/AMM.291-294.2102

Shishido, S.; Takahashi, R.; Murata, T.; Tamura, J.; Sugimasa, M.; Komura, A.; Futami, M.; Ichinose, M.; Ide, K. Stabilization of wind energy conversion system with hydrogen generator by using EDLC energy storage system. Electrical Engineering in Japan, v. 168, no. 3, p. 10-18, 2009. https://doi.org/10.1541/ieejpes.128.17

Silva, E. P.; Marin Neto, A. J.; Ferreira, P. F. P.; Camargo, J. C.; Apolinário, F. R.; Pinto, C. S. Analysis of hydrogen production from combined photovoltaics, wind energy and secondary hydroelectricity supply in Brazil. Solar Energy, v. 78, no. 5, p. 670-677, 2005. https://doi.org/10.1016/j.solener.2004.10.011

Troncoso, E.; Newborough, M. Electrolysers for mitigating wind curtailment and producing "green" merchant hydrogen. International Journal of Hydrogen Energy, v. 36, no. 1, p. 120-134, 2011. https://doi.org/10.1016/j.ijhydene.2010.10.047

Vega, R.; Ramos A.; Conde, E.; Reina, P. Pre-feasibility study of hybrid wind power-H2 system connected to electrical grid. IEEE Latin America Transactions, v. 9, no. 5, p. 800-807, 2011. https://doi.org/10.1109/tla.2011.6030992

Wang, Z.; Wang, H.; Ji, S.; Wang, X.; Pollet, B. G.; Wang, R. Multidimensional regulation of Ni3S2Co(OH)2 catalyst with high performance for wind energy electrolytic water. Journal of Power Sources, v. 446, 227348, 2020. https://doi.org/10.1016/j.jpowsour.2019.227348

Yang, W.-J.; Aydin, O. Wind energy-hydrogen storage hybrid power generation. International Journal of Energy Research, v. 25, no. 5, p. 449-463, 2001. https://doi.org/10.1002/er.696

Yang, T. C. Initial study of using rechargeable batteries in wind power generation with variable speed induction generators. IET Renewable Power Generation, v. 2, no. 2, p. 89-101, 2008. https://doi.org/10.1049/iet-rpg:20070008

Yumurtac, Z.; Toprak, K. An economic analysis of hydrogen production using wind power. International Journal of Renewable Energy Research, v. 1, p. 11-17, 2008.

Zhang, G.; Wan, X. A wind-hydrogen energy storage system model for massive wind energy curtailment. International Journal of Hydrogen Energy, v. 39, no. 3, p. 1243-1252, 2014.

Zhao, G.; Nielsen, E. R.; Troncoso, E.; Hyde, K.; Romeo, J. S.; Diderich, M. Life cycle cost analysis: A case study of hydrogen energy application on the Orkney Islands. International Journal of Hydrogen Energy, v. 44, no. 19, p. 9517-9528, 2018. https://doi.org/10.1016/j.ijhydene.2018.08.015

Zolezzi, J. M.; Garay, A.; Reveco, M. Large scale hydrogen production from wind energy in the Magallanes Area for consumption in the central zone of Chile. Journal of Power Sources, v. 195, no. 24, p. 8236-8243, 2010. https://doi.org/10.1016/j.jpowsour.2009.12.060


 

ISSN 2359-1412