Vol. 8, No 20, p. 1295-1313 - 31 dez. 2021
The relationship between hydrogen and its application in wind energy: A systematic review
Matheus Eurico Soares de Noronha e André Themoteo da Silva Melo
Abstract
The aim of this study was to map papers about the use of hydrogen as a fuel and its association with wind energy under siege in two databases (Web of Science and Scopus) to provide insights about this topic and verify its current context. This study was a systematic literature review and content analysis of 87 papers from Web of Science and Scopus database. The papers were analyzed from descriptive, bibliographic, methodologic, results and citation characteristics. The publications about this theme have been mostly developed using mixed research models (quantitative and qualitative), especially due to the need to validate these experimental models for practical application, can be classified into four central clusters: 1) Green hydrogen; 2) Economic Viability and Costs; 3) New Technologies; and 4) Public Policies and Case Studies, with different focuses that converging to the same objective, the use of hydrogen as an ecologically correct and profitable fuel to serve the energy production system from wind plants. From the results obtained, it is observed that the use of hydrogen as a fuel, and wind energy, are themes that have been relatively significant in recent years within the environment of industrial innovation, presenting an eclecticism, where several countries in a pulverized form are increasingly seeking invest in these technologies, which is expressed through the substantial growth in the number of papers published about these themes since 2000s.
Keywords
Fuel; Energy; Wind Energy; Hydrogen.
Resumo
Relação entre o hidrogênio e sua aplicação na energia eólica:
uma revisão sistemática. O objetivo deste estudo foi mapear artigos sobre o uso do
hidrogênio como combustível e a sua associação com a energia eólica
situados em duas bases de dados (Web of Science e Scopus) a fim de apresentar caminhos para
pesquisas na área e o contexto atual da produção científica desta. O estudo
consistiu na revisão sistemática da literatura através da análise do conteúdo
de 87 artigos provenientes dos bancos de dados da Web of Science e da Scopus. Os artigos foram
analisados a partir de características descritivas, bibliográficas, metodológicas, de resultados
e de citações. As publicações acerca deste tema têm sido majoritariamente
desenvolvidas com modelos de pesquisa mistos (quantitativo e qualitativo), especialmente devido à necessidade
de validar estes modelos experimentais para aplicação prática, podendo ser classificados
em quatro temáticas centrais: 1) Green hydrogen; 2) Viabilidade econômica e custos; 3)
Novas tecnologias; e 4) Políticas públicas e estudos de caso, com focos diferentes que acabam
convergindo para um objetivo comum, o uso do hidrogênio como combustível ecologicamente correto
e rentável para o atendimento do sistema de produção de energia a partir de usinas
eólicas. O uso do hidrogênio como combustível, e a própria energia eólica,
são temáticas relativamente pautadas de forma significativa há pouco tempo dentro do
ambiente de inovação industrial, apresentando um ecleticismo significativo, onde diversos
países de forma pulverizada estão procurando cada vez mais investir nestas tecnologias, o que
é expresso por meio do substancial crescimento do número de artigos publicados acerca destas
temáticas a partir dos anos 2000.
Palavras-chave
Combustível; Energia; Energia eólica; Hidrogênio.
DOI
10.21438/rbgas(2021)082003
Texto completo
PDF
Referências
Aiche-Hamane, L.; Belhamel, M.; Benyoucef, B.; Hamane, M. Feasibility study of hydrogen production from wind
power in the Region of Ghardaia. International Journal of Hydrogen Energy, v. 34, no. 11, p. 4947-4952,
2009. https://doi.org/10.1016/j.ijhydene.2008.12.037
Al Zohbi, G.; Hendrick, P.; Bouillard, P. Wind characteristics and wind energy potential analysis in five sites
in Lebanon. International Journal of Hydrogen Energy, v. 40, no. 44, p. 15311-15319, 2015.
https://doi.org/10.1016/j.ijhydene.2015.04.115
Alavi, O.; Mostafaeipour, A.; Qolipour, M. Analysis of hydrogen production from wind energy in the southeast of
Iran. International Journal of Hydrogen Energy, v. 41, no. 34, p. 15158-15171, 2016. https://doi.org/10.1016/j.ijhydene.2016.06.092
Al-Sharafi, A.; Sahin, A. Z.; Ayar, T.; Yilbas, B. S. Techno-economic analysis and optimization of solar and
wind energy systems for power generation and hydrogen production in Saudi Arabia. Renewable and
Sustainable Energy Reviews, v. 69, p. 33-49, 2017. https://doi.org/10.1016/j.rser.2016.11.157
Amica, G.; Arneodo Larochette, P.; Gennari, F. C. Light metal hydride-based hydrogen storage system: Economic
assessment in Argentina. International Journal of Hydrogen Energy, v. 45, no. 38, p. 18789-18801, 2020.
https://doi.org/10.1016/j.ijhydene.2020.05.036
Armijo, J.; Philibert, C. Flexible production of green hydrogen and ammonia from variable solar and wind energy:
Case study of Chile and Argentina. International Journal of Hydrogen Energy, v. 45, no. 3, p. 1541-1558,
2019. https://doi.org/10.1016/j.ijhydene.2019.11.028
Ashrafi, Z. N.; Ghasemian, M.; Shahrestani, M. I.; Khodabandeh, E.; Sedaghat, A. Evaluation of hydrogen production
from harvesting wind energy at high altitudes in Iran by three extrapolating Weibull methods. International
Journal of Hydrogen Energy, v. 43, no. 6, p. 3110-3132, 2018. https://doi.org/10.1016/j.ijhydene.2017.12.154
Ayodele, T. R.; Munda, J. L. Potential and economic viability of green hydrogen production by water electrolysis
using wind energy resources in South Africa. International Journal of Hydrogen Energy, v. 44, no. 33,
p. 17669-17687, 2019a. https://doi.org/10.1016/j.ijhydene.2019.05.077
Ayodele, T. R.; Munda, J. L. The potential role of green hydrogen production in the South Africa energy mix.
Journal of Renewable and Sustainable Energy, v. 11, no. 4, 044301, 2019b. https://doi.org/10.1063/1.5089958
Balat, H. Wind energy potential in Turkey. Energy Exploration & Exploitation, v. 23, no. 1, p. 51-59,
2005. https://doi.org/10.1260/0144-5987.23.1.51
Berg, T. L.; Apostolou, D.; Enevoldsen, P. Analysis of the wind energy market in Denmark and future interactions
with an emerging hydrogen market. International Journal of Hydrogen Energy, v. 46, no. 1, p. 146-156, 2020.
https://doi.org/10.1016/j.ijhydene.2020.09.166
Bhogilla, S. S.; Ito, H.; Segawa, T.; Kato, A.; Nakano, A. Experimental study on laboratory scale Totalized Hydrogen
Energy Utilization System using wind power data. International Journal of Hydrogen Energy, v. 42, no. 19,
p. 13827-13838, 2017. https://doi.org/10.1016/j.ijhydene.2016.12.125
Blal, M.; Belasri, A.; Benatillah, A.; Hamouda, M.; Lachtar, S.; Sahouane, N.; Labiri, S.; Mostefaoui, M. Assessment
of solar and wind energy as motive for potential hydrogen production of Algeria country; development a methodology
for uses hydrogen-based fuel cells. International Journal of Hydrogen Energy, v. 43, no. 19, p. 9192-9210,
2018. https://doi.org/10.1016/j.ijhydene.2018.03.200
Braun, G. W.; Suchard, A.; Martin, J. Hydrogen and electricity as carriers of solar and wind energy for the 1990s
and beyond. Solar Energy Materials, v. 24, no. 1/4, p. 62-75, 1991. https://doi.org/10.1016/0165-1633(91)90048-P
Burkhardt, J.; Patyk, A.; Tanguy, P.; Retzke, C. Hydrogen mobility from wind energy: A life cycle assessment focusing
on the fuel supply. Applied Energy, v. 181, p. 54-64, 2016. https://doi.org/10.1016/j.apenergy.2016.07.104
Carr, S. J. W.; Thanapalan, K. K. T.; Zhang, F.; Guwy, A. J.; Maddy, J.; Gusig, L.-O.; Premier, G. C. Integration of
wind power and hydrogen hybrid electric vehicles into electric grids. Smart Innovation, Systems and Technologies,
v. 2, p. 261-270, 2013. https://doi.org/10.1007/978-3-642-36645-1_24
Dagdougui, H.; Ouammi, A.; Sacile, R. A regional decision support system for onsite renewable hydrogen production from
solar and wind energy sources. International Journal of Hydrogen Energy, v. 36, no. 22, p. 14324-14334, 2011.
https://doi.org/10.1016/j.ijhydene.2011.08.050
Dagdougui, H.; Ouammi, A.; Sacile, R. Modelling and control of hydrogen and energy flows in a network of green
hydrogen refuelling stations powered by mixed renewable energy systems. International Journal of Hydrogen
Energy, v. 37, no. 6, p. 5360-5371, 2012. https://doi.org/10.1016/j.ijhydene.2011.07.096
Dienhart, H.; Siegel, A. Hydrogen storage in isolated electrical energy systems with photovoltaic and wind
energy. International Journal of Hydrogen Energy, v. 19, no. 1, p. 61-66, 1994. https://doi.org/10.1016/0360-3199(94)90178-3
Douak, M.; Settou, N. Estimation of hydrogen production using wind energy in Algeria. Energy Procedia,
v. 74, p. 981-990, 2015. https://doi.org/10.1016/j.egypro.2015.07.829
Fasihi, M.; Breyer, C. Base load electricity and hydrogen supply based on hybrid PV-wind power plants.
Journal of Cleaner Production, v. 243, 118466, 2019. https://doi.org/10.1016/j.jclepro.2019.118466
Fernández-Guillamón, A.; Das, K.; Cutululis, N. A.; Molina-García, Á. Offshore
wind power integration into future power systems: Overview and trends. Journal of Marine Science and
Engineering, v. 7, no. 11, 399, 2019. https://doi.org/10.3390/jmse7110399
Franzen, S.; Madlener, R. Optimal expansion of a hydrogen storage system for wind power (H2-WESS):
A real options analysis. Energy Procedia, v. 105, p. 3816-3823, 2017. https://doi.org/10.1016/j.egypro.2017.03.891
Früh, W.-G. From local wind energy resource to national wind power productiono. AIMS Energy, v. 3,
no. 1, p. 101-120, 2015. https://doi.org/10.3934/energy.2015.1.101
Garmsiri, S.; Rosen, M.; Smith, G. Integration of wind energy, hydrogen and natural gas pipeline systems to
meet community and transportation energy needs: A parametric study. Sustainability, v. 6, no. 5,
p. 2506-2526, 2014. https://doi.org/10.3390/su6052506
Gazey, R.; Salman, S. K.; Aklil-D'Halluin, D. D. A field application experience of integrating hydrogen
technology with wind power in a remote island location. Journal of Power Sources, v. 157, no. 2,
p. 841-847, 2006. https://doi.org/10.1016/j.jpowsour.2005.11.084
Genç, M. S.; Çelik, M.; Karasu, İ. A review on wind energy and wind-hydrogen production in
Turkey: A case study of hydrogen production via electrolysis system supplied by wind energy conversion system
in Central Anatolian Turkey. Renewable and Sustainable Energy Reviews, v. 16, no. 9, p. 6631-6646,
2012. https://doi.org/10.1016/j.rser.2012.08.011
Gondal, I. A.; Masood, S. A.; Khan, R. Green hydrogen production potential for developing a hydrogen economy
in Pakistan. International Journal of Hydrogen Energy, v. 43, no. 12, p. 6011-6039, 2018. https://doi.org/10.1016/j.ijhydene.2018.01.113
Gondal, I. Offshore renewable energy resources and their potential in a green Hydrogen supply chain through
power-to-gas. Sustainable Energy & Fuels, v. 3, p. 1468-1489, 2019. https://doi.org/10.1039/C8SE00544C
González, A.; McKeogh, E.; Gallachóir, B. Ó. The role of hydrogen in high wind energy
penetration electricity systems: The Irish case. Renewable Energy, v. 29, no. 4, p. 471-489, 2004.
https://doi.org/10.1016/j.renene.2003.07.006
González-Aparicio, I.; Kapetaki, Z.; Tzimas, E. Wind energy and carbon dioxide utilisation as an
alternative business model for energy producers: A case study in Spain. Applied Energy, v. 222,
p. 216-227, 2018. https://doi.org/10.1016/j.apenergy.2018.03.114
Guandalini, G.; Campanari, S.; Romano, M. C. Power-to-gas plants and gas turbines for improved wind
energy dispatchability: Energy and economic assessment. Applied Energy, v. 147, p. 117-130,
2015. https://doi.org/10.1016/j.apenergy.2015.02.055
Hexu, S.; Zheng, L.; Aibing, C.; Yan, Z.; Chunxiao, M. Current status and development trend of hydrogen
production technology by wind power. Transactions of China Electrotechnical Society, v. 34,
no. 19, p. 4071-4083, 2019. https://doi.org/10.1177/0144598718787294
Huang, Y. S.; Liu, S. J. Chinese green hydrogen production potential development: A provincial case study.
IEEE ACCESS, v. 8, p. 171968-171976, 2020. https://doi.org/10.1109/access.2020.3024540
Ishaq, H.; Dincer, I. A comparative evaluation of OTEC, solar and wind energy based systems for clean
hydrogen production. Journal of Cleaner Production, v. 246, 118736, 2019. https://doi.org/10.1016/j.jclepro.2019.118736
Ishaq, H.; Dincer, I.; Naterer, G. F. Performance investigation of an integrated wind energy system for
co-generation of power and hydrogen. International Journal of Hydrogen Energy, v. 43, no. 19,
p. 9153-9164, 2018. https://doi.org/10.1016/j.ijhydene.2018.03.139
Ishaq, H.; Dincer, I. Dynamic analysis of a new solar-wind energy-based cascaded system for hydrogen to
ammonia. International Journal of Hydrogen Energy, v. 45, no. 38, p. 18895-18911, 2020.
https://doi.org/10.1016/j.ijhydene.2020.04.149
Jahangiri, M.; Nematollahi, O.; Haghani, A.; Raiesi, H. A.; Alidadi Shamsabadi, A. An optimization of
energy cost of clean hybrid solar-wind power plants in Iran. International Journal of Green Energy,
v. 16, no. 15, p. 1-14, 2019. https://doi.org/10.1080/15435075.2019.1671415
Kaldellis, J. K.; Kavadias, K.; Zafirakis, D. The role of hydrogen-based energy storage in the support
of large-scale wind energy integration in island grids. International Journal of Sustainable Energy,
v. 34, no. 3/4, p. 188-201, 2013. https://doi.org/10.1080/14786451.2013.846342
Kameyama, H.; Yoshizaki, K.; Yasuda, I. Carbon capture and recycle by integration of CCS and green
hydrogen. Energy Procedia, v. 4, p. 2669-2676, 2011. https://doi.org/10.1016/j.egypro.2011.02.167
Khaitan, S. K.; Raju, M.; McCalley, J. D. Design of a novel and efficient hydrogen compressor for wind
energybased storage systems. International Journal of Hydrogen Energy, v. 40, no. 3, p. 1379-1387,
2015. https://doi.org/10.1016/j.ijhydene.2014.11.066
Kılkış, B. Exergetic comparison of wind energy storage with ice making cycle versus
mini-hydrogen economy cycle in off-grid district cooling. International Journal of Hydrogen
Energy, v. 42, no. 28, p. 17571-17582, 2017. https://doi.org/10.1016/j.ijhydene.2017.03.105
Kodicherla, S. P. K.; Kan, C.; Nanduri, P. M. B. R. K. Likelihood of wind energy assisted hydrogen
production in three selected stations of Fiji Islands. International Journal of Ambient Energy,
v. 41, no. 7, p. 1-10, 2018. https://doi.org/10.1080/01430750.2018.1492444
Koroneos, C.; Katopodi, E. Maximization of wind energy penetration with the use of H2
production: An exergy approach. Renewable and Sustainable Energy Reviews, v. 15, no. 1,
p. 648-656, 2011. https://doi.org/10.1016/j.rser.2010.06.022
Kudria, S.; Ivanchenko, I.; Tuchynskyi, B.; Petrenko, K.; Karmazin, O.; Riepkin, O. Resource potential
for wind-hydrogen power in Ukraine. International Journal of Hydrogen Energy, v. 46, no. 1,
p. 157-168, 2020. https://doi.org/10.1016/j.ijhydene.2020.09.211
Lee, J.-Y.; An, S.; Cha, K.; Hur, T. Life cycle environmental and economic analyses of a hydrogen
station with wind energy. International Journal of Hydrogen Energy, v. 35, no. 6,
p. 2213-2225, 2010. https://doi.org/10.1016/j.ijhydene.2009.12.082
Lepszy, S.; Chmielniak, T.; Monka, P. Storage system for electricity obtained from wind power plants
using underground hydrogen reservoir. Journal of Power Technologies, v. 97, no. 1, p. 61-68, 2017.
Li, Z.; Guo, P.; Han, R.; Sun, H. Current status and development trend of wind power generation-based
hydrogen production technology. Energy Exploration & Exploitation, v. 37, no. 1,
014459871878729, 2018. https://doi.org/10.1177/0144598718787294
Martín, M. Methodology for solar and wind energy chemical storage facilities design under
uncertainty: Methanol production from CO2 and hydrogen. Computers & Chemical
Engineering, v. 92, p. 43-54, 2016. https://doi.org/10.1016/j.compchemeng.2016.05.001
Martín, M.; Grossmann, I. E. Optimal integration of a self sustained algae based facility
with solar and/or wind energy. Journal of Cleaner Production, v. 145, p. 336-347, 2017.
https://doi.org/10.1016/j.jclepro.2017.01.051
Mönnich, K.; Neumann, T.; Strack, M.; Braess, H.; Scheuerer, K. Large scale hydrogen
production from wind energy in Patagonia, Argentina. Wind Engineering, v. 28,
no. 5, p. 565-575, 2004. https://doi.org/10.1260/0309524043028028
Mostafaeipour, A.; Dehshiri, S. J. H.; Dehshiri, S. S. H.; Jahangiri, M. Prioritization of
potential locations for harnessing wind energy to produce hydrogen in Afghanistan.
International Journal of Hydrogen Energy, v. 45, no. 58, p. 33169-33184, 2020.
https://doi.org/10.1016/j.ijhydene.2020.09.135
Mostafaeipour, A.; Khayyami, M.; Sedaghat, A.; Mohammadi, K.; Shamshirband, S.; Sehati, M.-A.;
Gorakifard, E. Evaluating the wind energy potential for hydrogen production: A case study.
International Journal of Hydrogen Energy, v. 41, no. 15, p. 6200-6210, 2016.
https://doi.org/10.1016/j.ijhydene.2016.03.038
Müller, S.; Groß, P.; Rauch, R.; Zweiler, R.; Aichernig, C.; Fuchs, M.; Hofbauer, H.
Production of diesel from biomass and wind power: Energy storage by the use of the Fischer-Tropsch
Process. Biomass Conversion and Biorefinery, v. 8, no. 2, p. 275-282, 2017.
https://doi.org/10.1007/s13399-017-0287-1
Muyeen, S. M.; Takahashi, R.; Tamura, J. Wind power and hydrogen generation system with cooperatively
controlled three-level NPC-VSC based energy capacitor. European Transactions on Electrical Power,
v. 20, no. 8, p. 1071-1081, 2010. https://doi.org/10.1002/etep.385
Nadaleti, W. C.; Borges dos Santos, G.; Lourenço, V. A. The potential and economic viability
of hydrogen production from the use of hydroelectric and wind farms surplus energy in Brazil: A
national and pioneering analysis. International Journal of Hydrogen Energy, v. 45, p. 1373-1384,
2020. https://doi.org/10.1016/j.ijhydene.2019.08.199
Nadaleti, W. C.; Santos, G. B.; Lourenço, V. A. Integration of renewable energies using the
surplus capacity of wind farms to generate H2 and electricity in Brazil and in the Rio
Grande do Sul State: Energy planning and avoided emissions within a circular economy.
International Journal of Hydrogen Energy, v. 45, no. 46, p. 24190-24202, 2020.
https://doi.org/10.1016/j.ijhydene.2020.06.226
Nagasawa, K.; Davidson, F. T.; Lloyd, A. C.; Webber, M. E. Impacts of renewable hydrogen production
from wind energy in electricity markets on potential hydrogen demand for light-duty vehicles.
Applied Energy, v. 235, p. 1001-1016, 2019. https://doi.org/10.1016/j.apenergy.2018.10.067
Nicita, A.; Maggio, G.; Andaloro, A. P. F.; Squadrito, G. Green hydrogen as feedstock: Financial
analysis of a photovoltaic-powered electrolysis plant. International Journal of Hydrogen
Energy, v. 45, no. 20, p. 11395-11408, 2020. https://doi.org/10.1016/j.ijhydene.2020.02.062
Olateju, B.; Kumar, A. Hydrogen production from wind energy in Western Canada for upgrading bitumen
from oil sands. Energy, v. 36, no. 11, p. 6326-6339, 2011. https://doi.org/10.1016/j.energy.2011.09.045
Olateju, B.; Monds, J.; Kumar, A. Large scale hydrogen production from wind energy for the upgrading
of bitumen from oil sands. Applied Energy, v. 118, p. 48-56, 2014. https://doi.org/10.1016/j.apenergy.2013.12.013
Olmos, F.; Hennessy, B. P.; Manousiouthakis, I. V.; Somiari, I.; Manousiouthakis, V. I. Thermodynamic
feasibility analysis of a water-splitting thermochemical cycle based on sodium carbonate decomposition.
International Journal of Hydrogen Energy, v. 44, p. 4041-4061, 2019. https://doi.org/10.1016/j.ijhydene.2018.11.153
Ostadi, M.; Paso, K. G.; Rodriguez-Fabia, S.; Oi, L. E.; Manenti, F.; Hillestad, M. Process integration
of green hydrogen: Decarbonization of chemical industries. Energies, v. 13, 4859, 2020.
https://doi.org/10.3390/en13184859
Proost, J. Critical assessment of the production scale required for fossil parity of green electrolytic
hydrogen. International Journal of Hydrogen Energy, v. 45, no. 35, p. 17067-17075, 2020.
https://doi.org/10.1016/j.ijhydene.2020.04.259
Rabiee, A.; Keane, A.; Soroudi, A. Technical barriers for harnessing the green hydrogen: A power system
perspective. Renewable Energy, v. 163, p. 1580-1587, 2021. https://doi.org/10.1016/j.renene.2020.10.051
Ramos, V.; Iglesias, G. Wind power viability on a small island. International Journal of Green Energy,
v. 11, no. 7 p. 741-760, 2014. https://doi.org/10.1080/15435075.2013.823434
Realpe-Jiménez, A.; Orozco-Agamez, J.; Acevedo-Morantes, M. Wind power for hydrogen production using
a spiral electrolyzer. International Journal of Applied Engineering Research, v. 10, p. 9175-9183, 2015.
Rezaei, M.; Mostafaeipour, A.; Qolipour, M.; Arabnia, H.-R. Hydrogen production using wind energy from sea
water: A case study on Southern and Northern coasts of Iran. Energy & Environment, v. 29,
no. 3, p. 333-357, 2018. https://doi.org/10.1177/0958305X17750052
Rezaei, M.; Khozani, N. N.; Jafari, N. Wind energy utilization for hydrogen production in an underdeveloped
country: An economic investigation. Renewable Energy, v. 147, no. 1, p. 1044-1057, 2019. https://doi.org/10.1016/j.renene.2019.09.079
Safari, F.; Dincer, I. Assessment and optimization of an integrated wind power system for hydrogen and
methane production. Energy Conversion and Management, v. 177, p. 693-703, 2018.
https://doi.org/10.1016/j.enconman.2018.09.071
Sarrias-Mena, R.; Fernández-Ramírez, L. M.; García-Vázquez, C. A.; Jurado, F.
Electrolyzer models for hydrogen production from wind energy systems. International Journal of Hydrogen
Energy, v. 40, no. 7, p. 2927-2938, 2015. https://doi.org/10.1016/j.ijhydene.2014.12.125
Schenk, N. J.; Moll, H. C.; Potting, J.; Benders, R. M. J. Wind energy, electricity, and hydrogen in The
Netherlands. Energy, v. 32, no. 10, p. 1960-1971, 2007. https://doi.org/10.1016/j.energy.2007.02.002
Sherif, S. A.; Barbir, F.; Veziroglu, T. N. Wind energy and the hydrogen economy-review of the technology.
Solar Energy, v. 78, no. 5, p. 647-660, 2005. https://doi.org/10.1016/j.solener.2005.01.002
Sheth, J. P.; Grewal, G. S.; Srinet, V.; Govindan, T. P. Wind hydrogen based distributed energy system for
rural India. Water and Energy International, v. 68, no. 2, p. 42-45, 2011.
Shi, S. Y.; Cheng, F.; Nayel, M. Discuss hydrogen production in Jiangsu Province using non-grid-connected
offshore wind power. Applied Mechanics and Materials, v. 291/294, p. 2102-2108, 2013.
https://doi.org/10.4028/www.scientific.net/AMM.291-294.2102
Shishido, S.; Takahashi, R.; Murata, T.; Tamura, J.; Sugimasa, M.; Komura, A.; Futami, M.; Ichinose, M.;
Ide, K. Stabilization of wind energy conversion system with hydrogen generator by using EDLC energy
storage system. Electrical Engineering in Japan, v. 168, no. 3, p. 10-18, 2009. https://doi.org/10.1541/ieejpes.128.17
Silva, E. P.; Marin Neto, A. J.; Ferreira, P. F. P.; Camargo, J. C.; Apolinário, F. R.; Pinto, C. S.
Analysis of hydrogen production from combined photovoltaics, wind energy and secondary hydroelectricity
supply in Brazil. Solar Energy, v. 78, no. 5, p. 670-677, 2005. https://doi.org/10.1016/j.solener.2004.10.011
Troncoso, E.; Newborough, M. Electrolysers for mitigating wind curtailment and producing "green"
merchant hydrogen. International Journal of Hydrogen Energy, v. 36, no. 1, p. 120-134, 2011.
https://doi.org/10.1016/j.ijhydene.2010.10.047
Vega, R.; Ramos A.; Conde, E.; Reina, P. Pre-feasibility study of hybrid wind power-H2 system
connected to electrical grid. IEEE Latin America Transactions, v. 9, no. 5, p. 800-807, 2011.
https://doi.org/10.1109/tla.2011.6030992
Wang, Z.; Wang, H.; Ji, S.; Wang, X.; Pollet, B. G.; Wang, R. Multidimensional regulation of
Ni3S2Co(OH)2 catalyst with high performance for wind energy
electrolytic water. Journal of Power Sources, v. 446, 227348, 2020. https://doi.org/10.1016/j.jpowsour.2019.227348
Yang, W.-J.; Aydin, O. Wind energy-hydrogen storage hybrid power generation. International
Journal of Energy Research, v. 25, no. 5, p. 449-463, 2001. https://doi.org/10.1002/er.696
Yang, T. C. Initial study of using rechargeable batteries in wind power generation with variable
speed induction generators. IET Renewable Power Generation, v. 2, no. 2, p. 89-101, 2008.
https://doi.org/10.1049/iet-rpg:20070008
Yumurtac, Z.; Toprak, K. An economic analysis of hydrogen production using wind power. International
Journal of Renewable Energy Research, v. 1, p. 11-17, 2008.
Zhang, G.; Wan, X. A wind-hydrogen energy storage system model for massive wind energy curtailment.
International Journal of Hydrogen Energy, v. 39, no. 3, p. 1243-1252, 2014.
Zhao, G.; Nielsen, E. R.; Troncoso, E.; Hyde, K.; Romeo, J. S.; Diderich, M. Life cycle cost analysis:
A case study of hydrogen energy application on the Orkney Islands. International Journal of
Hydrogen Energy, v. 44, no. 19, p. 9517-9528, 2018. https://doi.org/10.1016/j.ijhydene.2018.08.015
Zolezzi, J. M.; Garay, A.; Reveco, M. Large scale hydrogen production from wind energy in the Magallanes
Area for consumption in the central zone of Chile. Journal of Power Sources, v. 195, no. 24,
p. 8236-8243, 2010. https://doi.org/10.1016/j.jpowsour.2009.12.060
ISSN 2359-1412