Revista Brasileira de Gestao Ambiental e Sustentabilidade (ISSN 2359-1412)
Bookmark this page

Home > Edições Anteriores > v. 8, n. 18 (2021) > Marques

 

Vol. 8, No 18, p. 121-132 - 30 abr. 2021

 

A comparative study of the adsorption of azo dyes in mixed adsorbents composed of Aspergillus niger and Citrus sinensis chemically modified: Influence of pH



Liliane Martins Marques , Andressa Nathally Rocha Leal , Alice da Conceição Alves de Lima , Dayane Kelly Dias do Nascimento Santos , Karina Carvalho de Souza e Iranildo José da Cruz-Filho

Abstract
The economic growth of the textile sector in Brazil has contributed to the generation of new jobs, qualification of the workforce and better living conditions for the population. However, due to the high activity of the sector, large volumes of toxic effluents have been generated which, if improperly disposed of, cause serious environmental damage. Therefore, alternatives in the treatment of effluents are interesting to increase the availability of this resource. A technique that has stood out, for being efficient, easy to operate and economical, is adsorption, a passive capture process where pollutants are deposited on the surface of materials. Thus, the work aimed to carry out a comparative study of the influence of pH in the removal of the dyes Remazol Black (RB), Remazol Red (RR) and Remazol Yellow (RGY) using different mixed adsorbents constituted by the fungus Aspergillus niger grown in orange peel in two different culture media. Six types of adsorbents (three for each culture medium) were produced and were treated with acid, base and without treatment, and were subjected to adsorption tests at different pHs (2, 7 and 9), using a solution (25 mg.L-1) volume of 100 mL, 0.5 g of biomass, rotation 150 rpm, 30 oC. The results showed that the adsorbents produced were able to adsorb the dyes RB, RGY, RR at different pHs. The best adsorption condition was obtained at pH 2 and the adsorbents were treated with acid, showing a promising alternative for the treatment of textile effluents.


Keywords
Effluent treatment; Water quality; Textile dyes.

Resumo
Estudo comparativo da adsorção de corantes azo em adsorventes mistos compostos por Aspergillus niger e Citrus sinensis quimicamente modificados: influência do pH. O crescimento econômico do setor têxtil no Brasil tem contribuído para a geração de novos empregos, qualificação da mão de obra e melhores condições de vida para a população. Entretanto, devido à alta atividade do setor, tem-se gerado grandes volumes de efluentes tóxicos que se descartados de forma inadequada causam sérios danos ambientais. Sendo assim, alternativas no tratamento de efluentes são interessantes para aumentar a disponibilidade deste recurso. Uma técnica que vem se destacando, por ser eficiente, de fácil operação e econômica é a adsorção, um processo de captação passiva onde os poluentes depositam-se na superfície de materiais. Assim, o trabalho teve como objeto realizar um estudo comparativo da influência do pH na remoção dos corantes Remazol Black (RB), Remazol Red (RR) e Remazol Yellow (RGY) utilizando diferentes adsorventes mistos constituídos pelo fungo Aspergillus niger crescido em casca de laranja em dois diferentes meios de cultura. Foram produzidos seis tipos de adsorventes (três para cada meio de cultura) e foram submetidos a tratamento com ácido, base e sem tratamento, e foram submetidos a ensaios de adsorção em diferentes pHs (2, 7 e 9), utilizaram-se um volume de solução (25 mg.L-1) de 100 mL, 0,5 g de biomassa, agitação 150 rpm, 30 oC. Os resultados mostraram que os adsorventes produzidos foram capazes de adsorver os corantes RB, RGY, RR em diferentes pHs. A melhor condição de adsorção foi obtida em pH 2 e os adsorventes tratados com ácido. Sendo assim estes adsorventes tem se mostrando uma alternativa promissora para o tratamento de efluentes têxteis.


Palavras-chave
Tratamento de efluentes; Qualidade da água; Corantes têxteis.

DOI
10.21438/rbgas(2021)081807

Texto completo
PDF

Referências
ABIT - Associação Brasileira da Indústria Têxtil e de Confecção. 2019. Available from: <https://www.abit.org.br/cont/perfil-do-setor>. Accessed on: Oct. 24, 2020.

Aksu, Z.; Tezer, S. Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochemistry, v. 40, p. 1347-1361, 2005. https://doi.org/10.1016/j.procbio.2004.06.007

Ammadurai, G.; Ling, L. Y.; Lee, J.-F. Adsorption of reactive dye from an aqueous solution by chitosan: Isotherm, kinetic and thermodynamic analysis. Journal of Hazardous Materials, v. 152, p. 337-346, 2007. https://doi.org/10.1016/j.jhazmat.2007.07.002

Ara, N. J.; Hasan, M. A.; Rahman, M. A.; Salam, M. A.; Salam, A.; Alam, A. S. Removal of remazol red from textile waste water using treated sawdust-an effective way of effluent treatment. Bangladesh Pharmaceutical Journal, v. 16, p. 93-98, 2013. https://doi.org/10.3329/bpj.v16i1.14501

Arulkumar, M.; Sathishkumar, P.; Palvannan, T. Optimization of Orange G dye adsorption by activated carbon of Thespesia populnea pods using response surface methodology. Journal of Hazardous Materials, v. 186, p. 827-834, 2011. https://doi.org/10.1016/j.jhazmat.2010.11.067

Basak, S.; Senthilkumar, T.; Krishnaprasad, G.; Jagajanantha, P. Sustainable development in textile processing. In: Inamuddin; Asiri, A. M. (Eds.). Sustainable green chemical processes and their allied applications. Cham: Springer, 2020. p. 559-573. https://doi.org/10.1007/978-3-030-42284-4_20

Chaudhuri, M.; Elmolla, E. S.; Othman, R. Bt. adsorption of reactive dyes Remazol Red F-3B and Remazol Blue from aqueous solution by coconut coir activated carbon. Nature Environment and Pollution Technology, v. 10, no. 2, p. 193-196, 2011.

Chaves, K. O.; Monteiro, C. R. L.; Muniz, C. R.; Gomes, R. B.; Buarque, H. L. D. B. Adsorção de índigo carmim em biomassas mortas de Aspergillus niger. Engenharia Sanitária e Ambiental, v. 13, no. 4, p. 351-5355, 2008. https://doi.org/10.1590/S1413-41522008000400001

Costa, J. A. S.; Paranhos, C. M. Evaluation of rice husk ash in adsorption of Remazol Red dye from aqueous media. SN Applied Sciences, v. 1, Article Number 397, 2019. https://doi.org/10.1007/s42452-019-0436-1

Cruz, I. J.; Marques, L. M.; Souza, K. C.; Lima, V. F.; Marques, O. M.; Nascimento Junior, A. J. Remoção do corante Remazol Black B pelo uso da biomassa mista de Aspergillus niger e capim elefante (Pennisetum purpureum Schum). Engevista, v. 18, p. 265-279, 2016. https://doi.org/10.22409/engevista.v18i2.727

Cruz-Filho, I. J.; Ferreira, H. K. L.; Silva, S. K. G.; Machado, S. E. F.; Zaidan, L. E. M. C.; Lima, V. F.; Marques, O. M.; Nascimento-Junior, A. J. Otimização do processo de remoção do corante Preto de Remazol B por uso de biomassa mista de Aspergillus niger van Tieghem, 1867 (Ascomycota: Trichocomaceae) e Pennisetum purpureum Schumach., 1827 (Poales: Poaceae). Revista Brasileira de Gestão Ambiental e Sustentabilidade, v. 3, no. 6, p. 375-384, 2016. https://doi.org/10.21438/rbgas.030611

Dey, S. C.; Al-Amin, M.; Rashid, T. U.; Sultan, M. Z.; Ashaduzzaman, M.; Sarker, M.; Shamsuddin, S. M. Preparation, characterization and performance evaluation of chitosan as an adsorbent for remazol red. International Journal of Latest Research in Engineering and Technology, v. 2, p. 52-62, 2016.

Esteves, E. Polo de confecções do Agreste, um potencial ainda pouco conhecido. LeiaJa, 2020. Available from: <http://especiais.leiaja.com/descosturandoacrise/materia1.html>. Accessed on: Oct. 24, 2020.

FEBRATEX - Feira Brasileira para a Indústria Têxtil. 2019a. Available from: <https://fcem.com.br/noticias/quais-sao-os-principais-polos-da-industria-textil-do-brasil/>. Accessed on: Oct. 24, 2020.

FEBRATEX - Feira Brasileira para a Indústria Têxtil. 2019b. Available from: <https://fcem.com.br/noticias/entenda-a-influencia-do-polo-textil-no-agreste-pernambucano>. Accessed on: Oct. 24, 2020.

Felista, M. M.; Wanyonyi, W. C.; Ongera, G. Adsorption of anionic dye (Reactive Black 5) using macadamia seed Husks: Kinetics and equilibrium studies. Scientific African, v. 7, e00283, 2020. https://doi.org/10.1016/j.sciaf.2020.e00283

Furlan, F. R.; Silva, L. G. M.; Morgado, A. F.; Souza, A. A. U.; Souza, S. M. A. G. U. Removal of reactive dyes from aqueous solutions using combined coagulation/flocculation and adsorption on activated carbon. Resources, Conservation and Recycling, v. 54, p. 283-290, 2010. https://doi.org/10.1016/j.resconrec.2009.09.001

Hamzeh, Y.; Azadeh, E.; Izadyar, S.; Karaj, I. Removal of reactive Remazol Black B from contaminated water by lignocellulosic waste of canola stalks. Journal of Color Science and Technology, v. 5, p. 77-85, 2011.

Huang, J.; Liu, D.; Lu, J.; Wang, H.; Wei, X.; Liu, J. Biosorption of Reactive Black 5 by modified Aspergillus versicolor biomass: Kinetics, capacity and mechanism studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 492, p. 242-248, 2016. https://doi.org/10.1016/j.colsurfa.2015.11.071

Khalaf, M. A. Biosorption of reactive dye from textile wastewater by non-viable biomass of Aspergillus niger and Spirogyra sp. Bioresource Technology, v. 99, p. 6631–6634, 2008. https://doi.org/10.1016/j.biortech.2007.12.010

Mahmoodi, N. M.; Hayati, B.; Arami, M.; Lan, C. Adsorption of textile dyes on Pine cone from colored wastewater: Kinetic, equilibrium and thermodynamic studies. Desalination, v. 268, p. 117-125, 2011. https://doi.org/10.1016/j.desal.2010.10.007

Molavi, H.; Hakimian, A.; Shojaei, A.; Raeiszadeh, M. Selective dye adsorption by highly water stable metal-organic framework: Long term stability analysis in aqueous media. Applied Surface Science, v. 445, p. 424-436, 2018. https://doi.org/10.1016/j.apsusc.2018.03.189

Nascimento, A. C. C.; Cruz Filho, I. J.; Lima, V. F.; Nascimento Junior, A. J.; Marques, O. M.; Gondim, M. V. S. Biossorção do corante índigo carmim por Pennisetum purpureum Schumach. 1827 (Poales: Poaceae) (Capim elefante). Journal of Environmental Analysis and Progress, v. 2, p. 44-49, 2017. https://doi.org/10.24221/jeap.2.1.2017.1033.44-49

Nascimento, G. E.; Campos, N. F.; Silva, J. J.; Barbosa, C. M. B. D. M.; Duarte, M. M. M. B. Adsorption of anionic dyes from an aqueous solution by banana peel and green coconut mesocarp. Desalination and Water Treatment, v. 57, no. 30, p. 14093-14108, 2016. https://doi.org/10.1080/19443994.2015.1063012

Nascimento, G. E.; Duarte, M. M. M. B.; Campos, N. F.; Rocha, O. R. S. D.; Silva, V. L. D. Adsorption of azo dyes using peanut hull and orange peel: A comparative study. Environmental Technology, v. 35, p. 1436-1453, 2014. https://doi.org/10.1080/09593330.2013.870234

Nazir, R.; Khan, M.; Ur Rehman, R.; Shujah, S.; Khan, M.; Ullah, M.; Zada, A.; Mahmood, N.; Ahmad, I. Adsorption of selected azo dyes from an aqueous solution by activated carbon derived from Monotheca buxifolia waste seeds. Soil & Water Research, v. 15, p. 166-172, 2020. https://doi.org/10.17221/59/2019-SWR

Nugroho, F. L. A comparative study on the removal of Remazol Golden Yellow 6 dye by mixed culture of dead fungal biomass and activated carbon. Jurnal Purifikasi, v. 9, no. 1, p. 1-8, 2008. https://doi.org/10.12962/j25983806.v9.i1.135

Panigrahi, T.; Santhoskumar, A. U. Adsorption process for reducing heavy metals in textile industrial effluent with low cost adsorbents. Progress in Chemical and Biochemical Research, v. 3, p. 135-139, 2020. https://doi.org/10.33945/SAMI/PCBR.2020.2.7

Saratale, R. G.; Gandhi, S. S.; Purankar, M. V.; Kurade, M. B.; Govindwar, S. P.; Oh, S. E.; Saratale, G. D. Decolorization and detoxification of sulfonated azo dye C. I. Remazol Red and textile effluent by isolated Lysinibacillus sp. RGS. Journal of Bioscience and Bioengineering, v. 115, p. 658–667, 2013. https://doi.org/10.1016/j.jbiosc.2012.12.009

Silva, P. C.; Oliveira Neto, G. C.; Correia, J. M. F.; Tucci, H. N. P. Evaluation of economic, environmental and operational performance of the adoption of cleaner production: Survey in large textile industries. Journal of Cleaner Production, v. 278, 2021. https://doi.org/10.1016/j.jclepro.2020.123855

Song, S.; Liu, Z.; Zhang, J.; Jiao, C.; Ding, L.; Yang, S. Synthesis and adsorption properties of novel bacterial cellulose/graphene oxide/attapulgite materials for Cu and Pb ions in aqueous solutions. Materials, v. 13, 2020. https://doi.org/10.3390/ma13173703

Srivastava, A.; Shukla, S.; Jangid, N. K.; Srivastava, M.; Vishwakarma, R. World of the dye. In: Wani K. A.; Jangid N. K.; Bhat A. R. Impact of textile dyes on public health and the environment. Hershey, PA: IGI Global, 2020. p. 1-19. https://doi.org/10.4018/978-1-7998-0311-9

Sukarta, I. N. Utilization of nata de pina as adsorbent for adsorption of Remazol Black B textile dyes. International Journal of Innovative Research and Advanced Studies, v. 2, p. 140-143, 2020.

Tunç, Ö.; Tanaci, H.; Aksu, Z. Potential use of cotton plant wastes for the removal of Remazol Black B reactive dye. Journal of Hazardous Materials, v. 163, p. 187-198, 2009. https://doi.org/10.1016/j.jhazmat.2008.06.078

Ucar, D. Adsorption of Remazol Black Rl and Reactive Yellow 145 from aqueous solutions by pine needles. Iranian Journal of Science and Technology. Transactions of Civil Engineering, v. 38, p. 147, 2014.

Zanon, V. B. Estudo da adsorção do corante Reativo Preto 5 sobre carvão ativado: caracterização do adsorvente e determinação de parâmetros cinéticos e termodinâmicos. Blumenau: Universidade Regional de Blumenau, 2006. (Dissertação de mestrado).

Ziapour, A.; Sefidrooh, M.; Moadeli, M. R. Adsorption of Remazol Black B dye from aqueous solution using bagasse. Progress in Color, Colorants and Coatings, v. 9, p. 99-108, 2016. https://doi.org/10.30509/pccc.2016.75881


 

ISSN 2359-1412