Vol. 7, No 17, p. 1439-1453 - 31 dez. 2020
Removal of chromium VI and others metals from wastewater treatment by modification of macrophytes and magnetite: A review
Márcio da Costa Nogueira , Edson Rodrigo Fernandes dos Santos , Kaushik Pal e Fernando Gomes de Souza Júnior
Abstract
One of the problems that affect the environment is the chemical pollution of the nature of the water, mainly by the presence of toxic metals, among them the chromium, copper, nickel, zinc, among others. Numerous studies report the application of biosorption with the use of Eichhornia crassipes for the treatment of effluents from diverse origins, with very satisfactory results. However, several factors influence biosorption, such as pH, temperature, and contact time, and, therefore, cannot be neglected. Submerged macrophytes have important prospective to bioconcentrate heavy metals due to their larger surface area compared to non-submerged plants. On the other hand, the magnetite nanoparticles also present good results for the treatment of aqueous solutions contaminated by chromium and by other metal ions. The adsorption capacity of the Fe3O4 nanoparticles is high for various metal cations. Besides, these nanoparticles, which constitute polymer nanocomposites, are of particular interest because they combine excellent magnetic properties, greater stability of magnetic nanoparticles, and have higher biocompatibility, allowing more excellent suitability with biological materials involved in the removal of metallic cations. Therefore, the treatments described in this study are of great relevance as excellent alternatives in the treatment of several types of effluents.
Keywords
Eichhornia crassipes; Chromium; Toxic metals; Adsorption; Nanocomposites.
Resumo
Remoção de cromo hexavalente e de outros metais presentes em efluentes por tratamentos
com macrófitas modificadas e magnetita: uma revisão. Um dos problemas que afetam o
meio ambiente é a poluição química da água, principalmente pela
presença de metais tóxicos, entre eles o cromo, cobre, níquel, zinco, entre outros.
Inúmeros estudos relatam a aplicação da biosorção com o uso de
Eichhornia crassipes para o tratamento de efluentes de diversas origens, com resultados muito
satisfatórios. No entanto, vários fatores influenciam a biosorção, como pH,
temperatura e tempo de contato, e, portanto, não podem ser negligenciados. As macrófitas
submersas têm uma perspectiva importante para bioconcentrar metais pesados devido à sua maior
área de superfície em comparação com plantas não submersas. Por outro
lado, as nanopartículas magnetitas também apresentam bons resultados para o tratamento de
soluções aquosas contaminadas por cromo e por outros íons metálicos. A
capacidade de adsorção das nanopartículas Fe3O4 é
alta para vários cátions metálicos. Além disso, essas nanopartículas,
que constituem nanocompósitos de polímeros, despertam um grande interesse porque combinam
excelentes propriedades magnéticas, maior estabilidade das partículas magnéticas,
e possuem uma maior biocompatibilidade, permitindo uma maior adequação com materiais
biológicos envolvidos na remoção de cátions metálicos. Sendo assim,
os tratamentos descritos neste trabalho são de grande relevância como excelentes alternativas
no tratamento de diversos tipos de efluentes.
Palavras-chave
Eichhornia crassipes; Cromo; Metais tóxicos; Adsorção; Nanocompósitos.
DOI
10.21438/rbgas(2020)071725
Texto completo
PDF
References
Aditya, G. V. V.; Pujitha, B. P.; Babu, N. C.; Venkateswarlu, P. Biosorption of chromium onto Erythrina
variegata orientalis leaf powder. Korean Journal of Chemical Engineering, v. 29, n. 1, p. 64-71,
2012. https:/doi.org/10.1007/s11814-011-0139-9
Al-Saad, K. A.; Amr, M. A.; Hadi, D. T.; Arar, R. S.; AL-Sulaiti, M. M.; Abdulmalik, T. A.; Alsahamary, N.
M.; Kwak, J. C. Iron oxide nanoparticles: Applicability for heavy metal removal from contaminated water.
Arab Journal of Nuclear Sciences and Applications, v. 45, p. 335-346, 2012.
Basile, A.; Sorbo, S.; Conte, B. ; Cobianchi, R. C.; Trinchella, F.; Capasso, C.; Carginale, V. Toxicity,
accumulation, and removal of heavy metals by three aquatic macrophytes. International Journal of
Phytoremediation, v. 14, p. 374-387, 2012. https://doi.org/10.1080/15226514.2011.620653
Bind, A.; Goswami, S.; Prakash, V. Comparative analysis of floating and submerged macrophytes for heavy metal
(copper, chromium, arsenic and lead) removal: Sorbent preparation, characterization, regeneration and cost
estimation. Geology, Ecology, and Landscapes, v. 2, p. 61-72, 2018. https://doi.org/10.1080/24749508.2018.1452460
Bind, A.; Kushwaha, G.; Devi, S.; Goswani; B. S.; Prakash, V. Biosorption valorization of floating and submerged
macrophytes for heavy-metal removal in a multi-component system. Applied Water Science, v. 9, p. 95-99,
2019. https://doi.org/10.1007/s13201-019-0976-y
Culita, D. C.; Simonescu, C. M.; Patescu, R. E.; Preda, S.; Stanica, N.; Munteanu, C. U.; Oprea, O. Polyamine
functionalized magnetite nanoparticles as novel adsorbents for Cu(II) removal from aqueous solutions. Journal
of Inorganic and Organometallic Polymers and Materials, v. 27, p. 490-502, 2017. https://doi.org/10.1007/s10904-016-0491-7
Dal Magro, C.; Deon, M. C.; Thomé, A.; Piccin, J. S.; Colla, L. M. Biossorção passiva de
cromo (VI) através da microalga Spirulina platensis. Química Nova, v. 36, no. 8,
p. 1139-1145, 2013. https://doi.org/10.1590/S0100-40422013000800011
El-Taweel, Y. A.; Ehssan, M.; Nassef, E. M.; Elkheriany, I.; Sayed, D. Removal of Cr(VI) ions from waste water
by electrocoagulation using iron electrode. Egyptian Journal of Petroleum, v. 24, p. 183-192, 2015.
https://doi.org/10.1016/j.ejpe.2015.05.011
Feng, N.; Yu, J.; Zhao, H.; Cheng, Y.; Mo, C.; Cai, Q.; Li, Y.; Wong, M. Efficient phytoremediation of organic
contaminants in soils using plant-endophyte partnerships. Science Total Environmental, v. 83,
p. 352-368, 2017. https://doi.org/10.1016/j.scitotenv.2017.01.075
Gaherwar, S.; Klkurani P. Studies on removal of toxic heavy metals from water by Eichhornia crassipes.
Indian Journal of Scientific Research, v. 3, no. 2, p. 99-103, 2012.
Giri, A. K.; Patel, R.; Mandal, S. Removal of Cr(VI) from aqueous solution by Eichhornia crassipes root
biomass-derived activated carbon. Chemical Engineering Journal, v. 185/186, p. 71-81, 2012.
https://doi.org/10.1016/j.cej.2012.01.025
Gong, J.; Wang, X.; Shao, X.; Yuan, S.; Yang, C.; Hub, X. Adsorption of heavy metal ions by hierarchically
structured magnetite-carbonaceous sphere. Talanta, v. 101, p. 45-52, 2012. https://doi.org/10.1016/j.talanta.2012.08.035
Harijan, D. K. L.; Chandra, V. Magnetite/graphene/polyaniline composite for removal of aqueous hexavalent
chromium. Journal of Applied Polymer Science, v. 133, no. 39, p. 44002-44009, 2016. https://doi.org/10.1002/app.44002
Jimenez, R. S.; Dal Bosco, S. M.; Carvalho, W. A. Heavy metals removal from wastewater by the natural
zeolite scolecite: Temperature and pH influence in single-metal solutions. Química Nova,
v. 27, no. 5, p 734-738, 2004. https://doi.org/10.1590/S0100-40422004000500011
Jin, X.; Liu, Y.; Tan, J.; Owens, G.; Chen, Z. Removal of Cr(VI) from aqueous solutions via reduction
and absorption by green synthesized iron nanoparticles. Journal of Cleaner Production, v. 176,
p. 929-936, 2018. https://doi.org/10.1016/j.jclepro.2017.12.026
Kalia, S.; Kango, S.; Kumar, A.; Haldorai, Y.; Kumari, B.; Kumar, R. Magnetic polymer nanocomposites
for environmental and biomedical applications. Colloid and Polymer Science, v. 292, p. 2025-2052,
2014. https://doi.org/10.1007/s00396-014-3357-y
Karami, H. Heavy metal removal from water by magnetite nanorods. Chemical Engineering Journal,
v. 219, p. 209-216, 2013. http://doi.org/10.1016/j.cej.2013.01.022
Kłos, A.; Gordzielik, E.; Jóźwiak, M.; Rajfur, M. Sorption of cadmium and zinc in
selected species of epigeic mosses. Bulletin Environmental Contamination and Toxicology,
v. 92, no. 3, p. 323-328, 2014. https://doi.org/10.1007/s00128-014-1210-0
Kong, D.; Zhang, F.; Wang, K.; Ren, Z.; Weidong, Z. Fast removal of Cr(VI) from aqueous solution
using Cr(VI)-imprinted polymer particles. Industrial & Engineering Chemical Research,
v. 53, no. 11, p. 4434-4441, 2014. https://doi.org/10.1021/ie403484p
Kumari, M.; Pittman, C. U.; Mohan, D. Heavy metals [chromium (VI) and lead (II)] removal from water
using mesoporous magnetite (Fe3O4) nanospheres. Journal of Colloid and
Interface Science, v. 442, p. 120-132, 2015. https://doi.org/10.1016/j.jcis.2014.09.012
Lee, J. D. Química inorgânica não tão concisa. 5. ed. São
Paulo: Edgard Blücher, 1999.
Mirshahghassemi, S.; Lead, J. R. Oil recovery from water under environmentally relevant conditions
using magnetic nanoparticles. Environmental Science & Technology, v. 49, p. 11729-11736,
2015. http://doi.org/10.1021/acs.est.5b02687
Olad A.; Nabavi, R. Application of polyaniline for the reduction of toxic Cr(VI) in water. Journal
of Hazard Materials, v. 147, p. 845-851, 2007. https://doi.org/10.1016/j.jhazmat.2007.01.083
Pandey, V. C. Phytoremediation efficiency of Eichhornia crassipes in fly ash pond. International
Journal Phytoremediation, v. 18, no. 5, p. 450-452, 2016. https://doi.org/10.1080/15226514.2015.1109605
Prabhakar, R.; Ranjan, S.; Samadder, J. Aquatic and terrestrial weed mediated synthesis of iron
nanoparticles for possible application in wastewater remediation. Journal of Cleaner Production,
v. 168, p. 1201-1210, 2017. https://doi.org/10.1016/j.jclepro.2017.09.063
Preuss, H. G.; Echard, B.; Perricone, N. V.; Bagchi, D.; Yasmin, T; Stohs, S. J. Comparing metabolic
effects of six different commercial trivalent chromium compounds. Journal of Inorganic Biochemistry,
v. 102, no. 11, p. 1986-1990, 2008. https://doi.org/10.1016/j.jinorgbio.2008.07.012
Ramachandran, A.; Prasankumar, T.; Sivaprakash, S.; Wiston, B. R.; Biradar, S.; Jose, S. Removal of
elevated level of chromium in groundwater by the fabricated PANI/Fe3O4
nanocomposites. Environmental Science and Pollution Research, v. 24, no. 8, p. 7490-7498,
2017. https://doi.org/10.1007/s11356-017-8465-z
Reddy, L. H.; Arias, J. L.; Nicolas, J.; Couvreur, P. Magnetic nanoparticles: Design and characterization,
toxicity and biocompatibility, pharmaceutical and biomedical applications. Chemical Reviews, v. 112,
no. 11, p. 5818-5878, 2012. https://doi.org/10.1021/cr300068p
Rezania, S.; Ponraj, M.; Talaiekhozani, A.; Mohamad, S. M.; Din, M. F. Md.; Taib, S. M.; Sabbagh, F.; Sairana,
F. Md. Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic
pollutants in wastewater. Journal of Environmental Management, v. 163, p. 125-133, 2015. https://doi.org/10.1016/j.jenvman.2015.08.018
Rodrigues, R. F.; Trevenzoli, R. L.; Santos, L. R. G.; Leão, V. A.; Botaro, V. R. Adsorção
de metais pesados em serragem de madeira tratada com ácido cítrico. Engenharia Sanitária
e Ambiental, v. 11, no. 1, p. 21-26, 2006. https://doi.org/10.1590/S1413-41522006000100004
Santander, P.; Morales, D.; Rivas, B. L.; Kabay, N.; Yilmaz, I.; Kuşku, Ö.; Yuksel, M.; Bryjak, M.
Removal of Cr(VI) from aqueous solution by a highly efficient chelating resin. Polymer Bulletin, v. 74,
p. 2033-2044, 2017. https://www.doi.org/10.1007/s00289-016-1824-y
Shadreck, M.; Mugadza, T. Chromium, an essential nutrient and pollutant: A review. African Pure Applied
Chemistry, v. 7, no. 9, p. 310-317, 2013. https://doi.org/10.5897/AJPAC2013.0517
Shi, J.; Li, H.; Lu, H.; Zhao, M. X. Use of carboxyl functional magnetite nanoparticles as potential sorbents
for the removal of heavy metal ions from aqueous solution. Journal of Chemical and Engineering Data,
v. 60, p. 2035-2041, 2015. https://doi.org/10.1021/je5011196
Šillerová, H.; Komárek, M.; Chrastný, V.; Novák, M.; Vaněk, A.;
Drábek, O. Brewers draff as a new low-cost sorbent for chromium (VI): Comparison with other
biosorbents. Journal of Colloid and Interface Science, v. 396, p. 227-233, 2013.
https://doi.org/10.1016/j.jcis.2013.01.029
Silva, K. M. D.; Rezende, L. C. S. H.; Silva, C. A.; Bergamasco, R.; Gonçalves, D. S.
Caracterização físico-química da fibra de coco verde para a
adsorção de metais pesados em efluente de indústria de tintas.
Engevista, v. 15, p. 43-50, 2013. https://doi.org/10.22409/engevista.v15i1.387
Sudo, A.; Hirayama, S.; Endo, T. Highly efficient catalysts-acetylacetonato complexes of transition
metals in the 4th period for ring-opening polymerization of 1,3-benzoxazine. Journal of Polymer
Science: Part A: Polymer Chemistry, v. 48, no. 2, p. 479-484, 2010. https://doi.org/10.1002/pola.23810
Sureshkumar, V.; Kiruba Daniel, S. C. G.; Ruckmani, K.; Sivakumar, M. Fabrication of chitosan-magnetite
nanocomposite strip for chromium removal. Applied Nanoscience, v. 6, p. 277-285, 2016. https://doi.org/10.1007/s13204-015-0429-3
Wang, Y.; Fang, Z.; Liang, B.; Tsang, E. P. Remediation of hexavalent chromium contaminated soil by
stabilized nanoscale zero-valent iron prepared from steel pickling waste liquor. Chemical Engineering
Journal, v. 247, p. 283-290, 2014. https://doi.org/10.1016/j.cej.2014.03.011
Wei, Y.; Fang, Z.; Zheng, L.; Tsang, E. P. Biosynthesized iron nanoparticles aqueous extracts of
Eichhornia crassipes and its mechanism in the hexavalent chromium removal. Applied
Surface Science, v. 399, p. 322-329, 2017. https://doi.org/10.1016/j.apsusc.2016.12.090
Xing, W.; Wu, H.; Hao, B.; Huang, W.; Liu, G. Bioaccumulation of heavy metals by submerged macrophytes:
Looking for hyperaccumulators in eutrophic lakes. Environmental Science Technology, v. 47,
no. 9, p. 4695-4703, 2013. http://www.doi.org/10.1021/es303923w
Yu, J.; Jiang, C.; Guan, Q.; Ning, P.; Gu, J.; Chen, Q.; Zhang, J.; Miao, R. Enhanced removal of Cr(VI)
from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth.
Chemosfere, v. 195, p. 632-640, 2018. https://doi.org/10.1016/j.chemosphere.2017.12.128
Zamboulis, D.; Peleka, E. N.; Lazaridis, N. K. M. Metal ion separation and recovery from environmental
sources using various flotation and sorption techniques. Journal of Chemical Technology and
Biotechnology, v. 86, p. 335-344, 2011. https://doi.org/10.1002/jctb.2552
ISSN 2359-1412