Revista Brasileira de Gestao Ambiental e Sustentabilidade (ISSN 2359-1412)
Bookmark this page

Home > Edições Anteriores > v. 6, n. 14 (2019) > Santos

 

Vol. 6, No 14, p. 803-817 - 31 dez. 2019

 

Arsenic quantification techniques and ISO/IEC 17025 accreditation in Brazil



Jefferson Luiz Antunes Santos , Jader Galba Busato , Rodrigo de Almeida Heringer , Juscimar da Silva e Leonardo Barros Dobbss

Abstract
The importance of arsenic (As) quantification in environmental compartments is due to its risks to ecosystems and public health. There are reports of high concentrations of this metalloid in Brazil and technological differences between states are observed. The objective of this work was to present and discuss current scenarios of accreditation and compare the limit of quantification (LOQ) of As by analytical technique in Brazil. Data from accredited laboratories were collected on Inmetro website and in state metrological networks and then grouped and analyzed by state, matrix and analytical technique. There are large discrepancies between the number of laboratories per state and a good correlation with gross domestic product (GDP). Almost all laboratories have a LOQ less than the environmental limits. The observed list of techniques sorted from lowest to highest LOQ values is: for liquid samples ICP MS (inductively coupled plasma mass spectrometry), ET AAS (electrothermal atomic absorption spectrometry), HG AAS (hydride generation combined with atomic absorption spectrometry) or HG ICP OES (hydride generation combined with inductively coupled plasma optical emission spectrometry) and UV VIS (visible ultraviolet spectroscopy); for solids samples HG ICP OES, ICP MS, HG AAS, ET AAS and FAAS (flame atomic absorption spectrometry); and for bioindicators ICP MS, HG ICP OES. Analysis of As species is accredited in only one laboratory, but does not include all species.


Keywords
Hydride generation; Environmental laboratories; Limit of detection; Spectrometry; Speciation; Chromatography.

Resumo
T&ecute;cnicas de quantificação de arsênico e acreditação ISO/IEC 17025 no Brasil. A importância da quantificação do arsênico (As) nos compartimentos ambientais deve-se aos riscos para os ecossistemas e para a sa&uoacute;de p&uoacute;blica. H´ relatos de altas concentrações desse metaloide no Brasil e diferenças tecnológicas entre estados são observadas. O objetivo deste trabalho foi apresentar e discutir os cen´rios atuais de acreditação e comparar o limite de quantificação (LOQ) de As pelas t&ecute;cnicas analíticas no Brasil. Os dados dos laboratórios credenciados foram coletados no site do Inmetro e nas redes metrológicas estaduais e, em seguida, agrupados e analisados por estado, matriz e t&ecute;cnica analítica. Existem grandes discrepâncias entre o n&uoacute;mero de laboratórios por estado e uma boa correlação com o produto interno bruto (PIB). Quase todos os laboratórios têm um LOQ menor que os limites ambientais. A lista observada de t&ecute;cnicas classificadas dos menores aos mais altos valores de LOQ &ecute;: para amostras líquidas ICP MS (espectrometria de massa de plasma indutivamente acoplado), ET AAS (espectrometria de absorção atômica eletrot&ecute;rmica), HG AAS (geração de hidreto combinada com espectrometria de absorção atômica) ou HG ICP OES (geração de hidreto combinado com espectrometria de emissão óptica de plasma acoplada indutivamente) e UV VIS (espectroscopia ultravioleta visível); para amostras de sólidos HG ICP OES, ICP MS, HG AAS, ET AAS e FAAS (espectrometria de absorção atômica por chama); e para bioindicadores ICP MS, HG ICP OES. A an´lise das esp&ecute;cies As &ecute; creditada em apenas um laboratório, mas não inclui todas as esp&ecute;cies.


Palavras-chave
Geração de hidreto; Laboratórios ambientais; Limite de detecção; Espectrometria; Especiação; Cromatografia.

DOI
10.21438/rbgas.061413

Full text
PDF

References
Abdul, K. S. M.; Jayasinghe, S. S.; Chandana, E. P. S.; Jayasumana, C.; Silva, P. M. C. S. Arsenic and human health effects: A review. Environmental Toxicology and Pharmacology, v. 40, no. 3, p. 828-846, 2015. https://doi.org/10.1016/j.etap.2015.09.016

Akter, K. F.; Chen, Z.; Smith, L.; Davey, D.; Naidu, R. Speciation of arsenic in ground water samples: A comparative study of CE-UV, HG AAS and LC-ICP-MS. Talanta, v. 68, no. 2, p. 406-415, 2005. https://doi.org/10.1016/j.talanta.2005.09.011

Al-Assaf, K. H.; Tyson, J. F.; Uden, P. C. Determination of four arsenic species in soil by sequential extraction and high performance liquid chromatography with post-column hydride generation and inductively coupled plasma optical emission spectrometry detection. Journal of Analytical Atomic Spectrometry, v. 24, p. 376-384, 2009. https://doi.org/10.1039/b820300h

Alcântara, A. J. O.; Pierangeli, M. A. P.; Souza, C. A.; Souza, J. B. Teores de As, Cd, Pb, Cr e Ni e atributos de fertilidade de Argissolo Amarelo distrófico usado como lixão no Município de Cáceres, Estado de Mato Grosso. Revista Brasileira de Geociências, v. 41, p. 539-548, 2011. https://doi.org/10.25249/0375-7536.2011413539548

Baig, J. A.; Kazi, T. G.; Shah, A. Q.; Arain, M. B.; Afridi, H. I.; Khan, S.; Kandhro, G. A.; Naeemullah; Soomro, A. S. Evaluating the accumulation of arsenic in maize (Zea mays L.) plants from its growing media by cloud point extraction. Food and Chemical Toxicology, v. 48, no. 11, p. 3051-3057, 2010. https://doi.org/10.1016/j.fct.2010.07.043

Bergqvist, C.; Greger, M. Arsenic accumulation and speciation in plants from different habitats. Applied Geochemistry, v. 27, no. 3, p. 615-622, 2012. https://doi.org/10.1016/j.apgeochem.2011.12.009

Bidone, E.; Cesar, R.; Santos, M. C.; Sierpe, R.; Silva-Filho, E. V.; Kutter, V.; Silva, L. I. D.; Castilhos, Z. Mass balance of arsenic fluxes in rivers impacted by gold mining activities in Paracatu (Minas Gerais State, Brazil). Environmental Science and Pollution Research, v. 25, no. 9, p. 9085-9100, 2018. https://doi.org/10.1007/s11356-018-1215-z

Bolea-Fernandez, E.; Balcaen, L.; Resano, M.; Vanhaecke, F. Interference-free determination of ultra-trace concentrations of arsenic and selenium using methyl fluoride as a reaction gas in ICP-MS/MS. Analytical and Bioanalytical Chemistry, v. 407 p. 919-929, 2015. https://doi.org/10.1007/s00216-014-8195-8

Borba, R. P.; Figueiredo, B. R.; Cavalcanti, J. A. Arsênio na água subterrânea em Ouro Preto e Mariana, Quadrilátero Ferrífero (MG). Rem: Revista Escola de Minas, v. 57, no. 1, p. 45-51, 2004. https://doi.org/10.1590/S0370-44672004000100009

Borba, R. P.; Figueiredo, B. R.; Matschullat, J. Geochemical distribution of arsenic in waters, sediments and weathered gold mineralized rocks from Iron Quadrangle, Brazil. Environmental Geology, v. 44, p. 39-52, 2003. https://doi.org/10.1007/s00254-002-0733-6

Brasil. CONAMA Resolution 357, March 17, 2005. Establishes provisions for the classification of water bodies as well as environmental directives for their framework, establishes conditions and standards for effluent releases and makes other provisions. Available from: <http://www2.mma.gov.br/port/conama/processos/61AA3835/CONAMA-ingles.pdf#page=300>. Accessed on: Oct. 13, 2018.

Brasil. CONAMA Resolution 420, December 28, 2009. Establishes provisions for the criteria and guiding values regarding soil quality and the presence of chemical substances and establishes directives for the environmental management of contaminated areas by those substances due to anthropic practices. Available from: <http://www2.mma.gov.br/port/conama/processos/61AA3835/CONAMA-ingles.pdf#page=748>. Accessed on: Oct. 15, 2018.

Brasil. CONAMA Resolution 430, May 13, 2011. Provisions the conditions and standards of effluents and complements and changes Resolution 357 from March 17, 2005 issued by the National Environment Council (CONAMA). Available from: <http://www2.mma.gov.br/port/conama/processos/61AA3835/CONAMA-ingles.pdf#page=339>. Accessed on: Oct. 16, 2018.

Brasil. Portaria de Consolidação no 5, de 28 de setembro de 2017. Consolidação das normas sobre as ações e os serviços de saúde do Sistema Único de Saúde. Available from: <https://portalarquivos2.saude.gov.br/images/pdf/2018/marco/29/PRC-5-Portaria-de-Consolida----o-n---5--de-28-de-setembro-de-2017.pdf>. Accessed on: Oct. 16, 2018.

Bundschuh, J.; Litter, M. I.; Parvez, F.; Román-Ross, G.; Nicolli, H. B.; Jean, J.-S.; Liu, C.-W.; López, D.; Armienta, M. A.; Guilherme, L. R. G.; Cuevas, A. G.; Cornejo, L.; Cumbal, L.; Toujaguez, R. One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Science of The Total Environment, v. 429, p. 2-35, 2012. https://doi.org/10.1016/j.scitotenv.2011.06.024

Cheng, H.; Shen, L.; Liu, J.; Xu, Z.; Wang, Y. Coupling nanoliter high-performance liquid chromatography to inductively coupled plasma mass spectrometry for arsenic speciation. Journal of Separation Science, v. 41, p. 1524-1531, 2018. https://doi.org/10.1002/jssc.201701178

Costa, R. V. F.; Leite, M. G. P.; Mendonça, F. P. C.; Nalini Jr., H. A. Geochemical mapping of arsenic in surface waters and stream sediments of the Quadrilátero Ferrífero, Brazil. Rem: Revista Escola de Minas, v. 68, p. 43-51, 2015. https://doi.org/10.1590/0370-44672015680077

De La Cruz, A.; Ferreira, L.; Andrade, V.; Gioda, A. Biomonitoring of toxic elements in plants collected near leather tanning industry. Journal of the Brazilian Chemical Society, v. 30, p. 256-264, 2018. https://doi.org/10.21577/0103-5053.20180174

Deschamps, E.; Ciminelli, V. S. T.; Lange, F. T.; Matschullat, J.; Raue, B.; Schmidt , H. Soil and sediment geochemistry of the Iron Quadrangle, Brazil: The case of arsenic. Journal of Soils Sediments, v. 2, no. 4, p. 216-222, 2002. https://doi.org/10.1007/BF02991043

Gallego Ríos, S. E.; Ramírez, C. M.; López, B. E.; Macías, S. M.; Leal, J.; Velásquez, C. M. Evaluation of mercury, lead, arsenic, and cadmium in some species of fish in the Atrato River Delta, Gulf of Urabá, Colombian Caribbean. Water, Air & Soil Pollution, v. 229, p. 275, 2018. https://doi.org/10.1007/s11270-018-3933-8

García-Rico, L.; Meza-Figueroa, D.; Jay Gandolfi, A.; Rivero, C. I.; Martínez-Cinco, M. A.; Meza-Montenegro, M. M. Health risk assessment and urinary excretion of children exposed to arsenic through drinking water and soils in Sonora, Mexico. Biological Trace Element Research, v. 187, no. 1, p. 9-21, 2019. https://doi.org/10.1007/s12011-018-1347-5

Grochau, I. H.; Caten, C. S.; Camargo Forte, M. M. Current American landscape in laboratory accreditation according to ISO/IEC 17025. Accreditation and Quality Assurance, v. 22, no. 2, p. 57-62, 2017. https://doi.org/10.1007/s00769-017-1248-x

Gürkan, R.; Kir, U.; Altunay, N. Development of a simple, sensitive and inexpensive ion-pairing cloud point extraction approach for the determination of trace inorganic arsenic species in spring water, beverage and rice samples by UV–Vis spectrophotometry. Food Chemistry, v. 180, p. 32-41, 2015. https://doi.org/10.1016/j.foodchem.2015.01.142

Gürleyük, H.; Tyson, J. F.; Uden, P. C. Determination of extractable arsenic in soils using slurry sampling-on-line microwave extraction-hydride generation-atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, v. 55, no. 7, p. 935-942, 2000. https://doi.org/10.1016/S0584-8547(00)00196-8

Hassanpoor, S.; Khayatian, G.; Azar, A. R. J. Ultra-trace determination of arsenic species in environmental waters, food and biological samples using a modified aluminum oxide nanoparticle sorbent and AAS detection after multivariate optimization. Microchimica Acta, v. 182, no. 11/12, p. 1957-1965, 2015. https://doi.org/10.1007/s00604-015-1532-6

Hung, D. Q.; Nekrassova, O.; Compton, R. G. Analytical methods for inorganic arsenic in water: a review. Talanta, v. 64, p. 269-277, 2004. https://doi.org/10.1016/j.talanta.2004.01.027

Inmetro - Instituto Nacional de Metrologia, Qualidade e Tecnologia. Consulta ao Catálogo da RBLE. 2018. Available from: <http://www.inmetro.gov.br/laboratorios/rble/>. Accessed on: Jul. 24, 2018.

Kaya, G.; Turkoglu, S. Bioaccumulation of heavy metals in various tissues of some fish species and green tiger shrimp (Penaeus semisulcatus) from Iskenderun Bay, Turkey, and risk assessment for human health. Biological Trace Element Research, v. 180, no. 2, p. 314-326, 2017. https://doi.org/10.1007/s12011-017-0996-0

Khan, N.; Ryu, K. Y.; Choi, J. Y.; Nho, E. Y.; Habte, G.; Choi , H.; Kim, M. H.; Park, K. S.; Kim, K. S. Determination of toxic heavy metals and speciation of arsenic in seaweeds from South Korea. Food Chemistry, v. 169, p. 464-470, 2015. https://doi.org/10.1016/j.foodchem.2014.08.020

Kilic, S.; Cengiz, M. F.; Kilic, M. Monitoring of metallic contaminants in energy drinks using ICP-MS. Environmental Monitoring and Assessment, v. 190, p. 202, 2018. https://doi.org/10.1007/s10661-018-6590-x

Kim, H.-R.; Kim, K.-H.; Yu, S.; Moniruzzaman, M.; Hwang, S.-I. ; Lee, G.-T.; Yuna, S.-T. Better assessment of the distribution of As and Pb in soils in a former smelting area, using ordinary co-kriging and sequential Gaussian co-simulation of portable X-ray fluorescence (PXRF) and ICP-AES data. Geoderma, v. 341, p. 26-38, 2019. https://doi.org/10.1016/j.geoderma.2019.01.031

Komorowicz, I.; Barałkiewicz, D. Determination of total arsenic and arsenic species in drinking water, surface water, wastewater, and snow from Wielkopolska, Kujawy-Pomerania, and Lower Silesia Provinces, Poland. Environmental Monitoring and Assessment, v. 188, 2016. https://doi.org/10.1007/s10661-016-5477-y

Lee, H. G.; Kwon, J. Y.; Chung, D. S. Sensitive arsenic speciation by capillary electrophoresis using UV absorbance detection with on-line sample preconcentration techniques. Talanta, v. 181, p. 366-372, 2018. https://doi.org/10.1016/j.talanta.2018.01.034

Liu, G.; Cai, Y. Studying arsenite–humic acid complexation using size exclusion chromatography–inductively coupled plasma mass spectrometry. Journal of Hazardous Materials, v. 262, p. 1223-1229, 2013. https://doi.org/10.1016/j.jhazmat.2012.05.043

Liu, Q.; Lu, X.; Peng, H.; Popowich, A.; Tao, J.; Uppal, J. S.; Yan, X.; Boe, D.; Le, X. C. Speciation of arsenic: A review of phenylarsenicals and related arsenic metabolites. TrAC Trends in Analytical Chemistry, v. 104, p. 171-182, 2018. https://doi.org/10.1016/j.trac.2017.10.006

Ma, J.; Sengupta, M. K.; Yuan, D.; Dasgupta, P. K. Speciation and detection of arsenic in aqueous samples: A review of recent progress in non-atomic spectrometric methods. Analytica Chimica Acta, v. 831, p. 1-23, 2014. https://doi.org/10.1016/j.aca.2014.04.029

Ma, L.; Wang, L.; Jia, Y.; Yang, Z. Arsenic speciation in locally grown rice grains from Hunan Province, China: Spatial distribution and potential health risk. Science of the Total Environment, v. 557-558, p. 438-444, 2016. https://doi.org/10.1016/j.scitotenv.2016.03.051

Machado, C. S.; Fregonesi, B. M.; Alves, R. I. S.; Tonani, K. A. A.; Sierra, J.; Martinis, B. S.; Celere, B. S.; Mari, M.; Schuhmacher, M.; Nadal, M.; Domingo, J. L.; Segura-Muñoz, S. Health risks of environmental exposure to metals and herbicides in the Pardo River, Brazil. Environmental Science and Pollution Research, v. 24, p. 20160-20172, 2017. https://doi.org/10.1007/s11356-017-9461-z

Makowska, D.; Strugala, A.; Wierońska, F.; Bacior, M. Assessment of the content, occurrence, and leachability of arsenic, lead, and thallium in wastes from coal cleaning processes. Environmental Science and Pollution Research, v. 26, p. 8418-8428, 2018. https://doi.org/10.1007/s11356-018-3621-7

Moe, B.; Peng, H.; Lu, X.; Chen, B.; Chen, L. W. L.; Gabos, S.; Li, X.-F.; Le, C. Comparative cytotoxicity of fourteen trivalent and pentavalent arsenic species determined using real-time cell sensing. Journal of Environmental Sciences, v. 49, p. 113-124, 2016. https://doi.org/10.1016/j.jes.2016.10.004

Nielsen, S. S.; Petersen, L. R.; Kjeldsen, P.; Jakobsen, R. Amendment of arsenic and chromium polluted soil from wood preservation by iron residues from water treatment. Chemosphere, v. 84, p. 383-389, 2011. https://doi.org/10.1016/j.chemosphere.2011.03.069

Oliveira, R. M.; Antunes, A. C. N.; Vieira, M. A.; Medina, A. L.; Ribeiro, A. S. Evaluation of sample preparation methods for the determination of As, Cd, Pb, and Se in rice samples by GF AAS. Microchemical Journal, v. 124, p. 402-409, 2016. https://doi.org/10.1016/j.microc.2015.09.018

Ono, F. B.; Guilherme, L. R. G.; Penido, E. S.; Penido, E. S.; Carvalho, G. S.; Hale, B.; Toujaguez, R.; Bundschuh, J. Arsenic bioaccessibility in a gold mining area: A health risk assessment for children. Environmental Geochemistry and Health, v. 34, p. 457-465, 2012. https://doi.org/10.1007/s10653-011-9444-9

Oroian, M.; Prisacaru, A.; Hretcanu, E. C.; Stroe, S.-G.; Leahu, A.; Buculei, A. Heavy metals profile in honey as a potential indicator of botanical and geographical origin. International Journal of Food Properties, v. 19, n. 8, p. 1825-1836, 2016. https://doi.org/10.1080/10942912.2015.1107578

Paye, H. D. S.; Mello, J. W. V.; Abrahão, W. A. P.; Fernandes Filho, E. I.; Dias, L. C. P.; Castro, M. L. O.; Melo, S. B.; França, M. M. Valores de referência de qualidade para metais pesados em solos no Estado do Espírito Santo. Revista Brasileira de Ciência do Solo, v. 34, no. 6, p. 2041-2051, 2010. https://doi.org/10.1590/S0100-06832010000600028

Pereira, E. R.; Almeida, T. S.; Borges, D. L. G.; Carasek, E.; Welz, B.; Feldmann, J.; Menoyo, J. C. Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry. Talanta, v. 150, p. 142-147, 2016. https://doi.org/10.1016/j.talanta.2015.12.036

Pierangeli, M. A. P.; Guilherme, L. R. G.; Carvalho, G. S.; Carvalho, C. A.; Silva, C. A.; Pierangeli, L. M. P. Elementos-traço em áreas de vegetação nativa e agricultura intensiva do Estado de Mato Grosso determinados por fluorescência de raios-x por reflexão total. Revista Brasileira de Ciência do Solo, v. 39, n. 4, p. 1048-1057, 2015. https://doi.org/10.1590/01000683rbcs20140373

Raber, G.; Stock, N.; Hanel, P.; Murko, M.; Navratilova, J.; Francesconi, K. A. An improved HPLC–ICPMS method for determining inorganic arsenic in food: Application to rice, wheat and tuna fish. Food Chemistry, v. 134, p. 524-532, 2012. https://doi.org/10.1016/j.foodchem.2012.02.113

Rede Metrológica do Rio Grande do Sul. Laboratórios Reconhecidos - Rede Metrológica. 2018. Available from: <http://www.redemetrologica.com.br/laboratorios-reconhecidos>. Accessed on: Jul. 26, 2018

Rezende, P. S.; Costa, L. M.; Windmöller, C. C. Arsenic mobility in sediments from Paracatu River Basin, MG, Brazil. Archives of Environmental Contamination and Toxicology, v. 68, p. 588-602, 2015. https://doi.org/10.1007/s00244-015-0134-y

Rezende, P. S.; Moura, P. A. S.; Durão Jr., W. A.; Nascentes, C. C.; Windmöller, C. C.; Costa, L. M. Arsenic and Mercury mobility in Brazilian sediments from the São Francisco River Basin. Journal of the Brazilian Chemical Society, v. 22, p. 910-918, 2011. https://doi.org/10.1590/S0103-50532011000500014

RMMG - Rede Metrológica de Minas Gerais. Laboratórios reconhecidos. 2018. Available from: <https://www.rmmg.com.br/laboratoriosreconhecidos>. Accessed on: Jul. 25, 2018.

Sankararamakrishnan, N.; Mishra, S. A comprehensive review on various analytical methods for the determination of inorganic and organic arsenic in environmental samples. In: Gupta T.; Agarwal, A.; Agarwal, R. L. N. (Ed.). Environmental contaminants. Energy, environment, and sustainability. Singapore: Springer, 2018. p. 21-41. https://doi.org/10.1007/978-981-10-7332-8_2

Santos, G. R.; Pales, R. C.; Rodrigues, S. G. Desigualdades regionais no Brasil - 1991-2010. InterSciencePlace, v. 1, no. 31, p. 145-173, 2014.

Santos, Q. O.; Silva Junior, M. M.; Lemos, V. A.; Ferreira, S. L. C.; Andrade, J. B. An online preconcentration system for speciation analysis of arsenic in seawater by hydride generation flame atomic absorption spectrometry. Microchemical Journal, v. 143, p. 175-180, 2018. https://doi.org/10.1016/j.microc.2018.08.004

Silva, D.; Bellato, C.; Marques Neto, J.; Fontes, M. Arsenic and trace metals in water and sediment of the Velhas River, Southeastern Iron Quadrangle Region, Minas Gerais, Brazil. Quimica Nova, v. 41, p. 1011-1018, 2018. https://doi.org/10.21577/0100-4042.20170275

Souza, L. C.; Campos, M. L.; Reichert, G.; Moura, C. N. Teores de arsênio em solos de três regiões do Estado de Santa Catarina. Revista Ambiente & Água, v. 11, p. 135-144, 2016. https://doi.org/10.4136/ambi-agua.1746

Varejão, E. V. V.; Bellato, C. R.; Fontes, M. P. F.; Mello, J. W. V. Arsenic and trace metals in river water and sediments from the Southeast portion of the Iron Quadrangle, Brazil. Environmental Monitoring and Assessment, v. 172, no. 1/4, p. 631-642, 2011. https://doi.org/10.1007/s10661-010-1361-3

Wang, Y.; Li, Y.; Lv, K.; Chen, X.; Yu, X. A simple and sensitive non-chromatographic method for quantification of four arsenic species in rice by hydride generation-atomic fluorescence spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, v. 149, p. 197-202, 2018. https://doi.org/10.1016/j.sab.2018.08.012

Wang, Z.; Cui, Z.; Xu, X. Lysosomal membrane response of the earthworm, Eisenia fetida, to arsenic species exposure in OECD soil. RSC Advances, v. 6, p. 23498-23507, 2016. https://doi.org/10.1039/C5RA27725F

Waterlot, C.; Douay, F. Arsenic mobility and speciation in contaminated kitchen garden and lawn soils: An evaluation of water for assessment of As phytoavailability. Environmental Science and Pollution Research, v. 22, p. 6164-6175, 2015. https://doi.org/10.1007/s11356-014-3829-0

Wolf, R. E.; Morman, S. A.; Hageman, P. L.; Hoefen, T. M.; Plumlee, G. S. Simultaneous speciation of arsenic, selenium, and chromium: Species stability, sample preservation, and analysis of ash and soil leachates. Analytical and Bioanalytical Chemistry, v. 401, p. 2733-2745, 2011. https://doi.org/10.1007/s00216-011-5275-x

Yogarajah, N.; Tsai, S. S. H. Detection of trace arsenic in drinking water: Challenges and opportunities for microfluidics. Environmental Science: Water Research & Technology, v. 1, p. 426-447, 2015. https://doi.org/10.1039/C5EW00099H

Zhong, L.; Ni, R.; Zhang, L.; He, Z.; Zhou, H.; Li, L. Determination of total arsenic in soil by gas chromatography after pyrolysis. Microchemical Journal, v. 146, p. 568-574, 2019. https://doi.org/10.1016/j.microc.2019.01.057

Zhu, Q.; Cui, H.; Dong, L.; Shan, B.; Han, T.; Li, H.; Cai, F. Speciation of arsenic in rice by ion chromatography with online anion suppression and inductively coupled plasma mass spectrometry. Analitical Letters, v. 50, p. 1040-1048, 2017. https://doi.org/10.1080/00032719.2016.1203927


 

ISSN 2359-1412