Vol. 6, No 14, p. 803-817 - 31 dez. 2019
Arsenic quantification techniques and ISO/IEC 17025 accreditation in Brazil
Jefferson Luiz Antunes Santos , Jader Galba Busato , Rodrigo de Almeida Heringer , Juscimar da Silva e Leonardo Barros Dobbss
Abstract
The importance of arsenic (As) quantification in environmental compartments is due to its risks to ecosystems and public health. There are reports of high concentrations of this metalloid in Brazil and technological differences between states are observed. The objective of this work was to present and discuss current scenarios of accreditation and compare the limit of quantification (LOQ) of As by analytical technique in Brazil. Data from accredited laboratories were collected on Inmetro website and in state metrological networks and then grouped and analyzed by state, matrix and analytical technique. There are large discrepancies between the number of laboratories per state and a good correlation with gross domestic product (GDP). Almost all laboratories have a LOQ less than the environmental limits. The observed list of techniques sorted from lowest to highest LOQ values is: for liquid samples ICP MS (inductively coupled plasma mass spectrometry), ET AAS (electrothermal atomic absorption spectrometry), HG AAS (hydride generation combined with atomic absorption spectrometry) or HG ICP OES (hydride generation combined with inductively coupled plasma optical emission spectrometry) and UV VIS (visible ultraviolet spectroscopy); for solids samples HG ICP OES, ICP MS, HG AAS, ET AAS and FAAS (flame atomic absorption spectrometry); and for bioindicators ICP MS, HG ICP OES. Analysis of As species is accredited in only one laboratory, but does not include all species.
Keywords
Hydride generation; Environmental laboratories; Limit of detection; Spectrometry; Speciation; Chromatography.
Resumo
T&ecute;cnicas de quantificação de arsênico e acreditação ISO/IEC 17025
no Brasil. A importância da quantificação do arsênico (As) nos compartimentos
ambientais deve-se aos riscos para os ecossistemas e para a sa&uoacute;de p&uoacute;blica. H´ relatos
de altas concentrações desse metaloide no Brasil e diferenças tecnológicas entre
estados são observadas. O objetivo deste trabalho foi apresentar e discutir os cen´rios atuais
de acreditação e comparar o limite de quantificação (LOQ) de As pelas
t&ecute;cnicas analíticas no Brasil. Os dados dos laboratórios credenciados foram coletados no
site do Inmetro e nas redes metrológicas estaduais e, em seguida, agrupados e analisados por estado,
matriz e t&ecute;cnica analítica. Existem grandes discrepâncias entre o n&uoacute;mero de
laboratórios por estado e uma boa correlação com o produto interno bruto (PIB). Quase
todos os laboratórios têm um LOQ menor que os limites ambientais. A lista observada de
t&ecute;cnicas classificadas dos menores aos mais altos valores de LOQ &ecute;: para amostras líquidas
ICP MS (espectrometria de massa de plasma indutivamente acoplado), ET AAS (espectrometria de
absorção atômica eletrot&ecute;rmica), HG AAS (geração de hidreto combinada
com espectrometria de absorção atômica) ou HG ICP OES (geração de hidreto
combinado com espectrometria de emissão óptica de plasma acoplada indutivamente) e UV VIS
(espectroscopia ultravioleta visível); para amostras de sólidos HG ICP OES, ICP MS, HG AAS,
ET AAS e FAAS (espectrometria de absorção atômica por chama); e para bioindicadores ICP MS,
HG ICP OES. A an´lise das esp&ecute;cies As &ecute; creditada em apenas um laboratório, mas
não inclui todas as esp&ecute;cies.
Palavras-chave
Geração de hidreto; Laboratórios ambientais; Limite de detecção; Espectrometria;
Especiação; Cromatografia.
DOI
10.21438/rbgas.061413
Full text
PDF
References
Abdul, K. S. M.; Jayasinghe, S. S.; Chandana, E. P. S.; Jayasumana, C.; Silva, P. M. C. S. Arsenic and human health
effects: A review. Environmental Toxicology and Pharmacology, v. 40, no. 3, p. 828-846, 2015. https://doi.org/10.1016/j.etap.2015.09.016
Akter, K. F.; Chen, Z.; Smith, L.; Davey, D.; Naidu, R. Speciation of arsenic in ground water samples: A comparative
study of CE-UV, HG AAS and LC-ICP-MS. Talanta, v. 68, no. 2, p. 406-415, 2005. https://doi.org/10.1016/j.talanta.2005.09.011
Al-Assaf, K. H.; Tyson, J. F.; Uden, P. C. Determination of four arsenic species in soil by sequential extraction and
high performance liquid chromatography with post-column hydride generation and inductively coupled plasma optical
emission spectrometry detection. Journal of Analytical Atomic Spectrometry, v. 24, p. 376-384, 2009. https://doi.org/10.1039/b820300h
Alcântara, A. J. O.; Pierangeli, M. A. P.; Souza, C. A.; Souza, J. B. Teores de As, Cd, Pb, Cr e Ni e atributos
de fertilidade de Argissolo Amarelo distrófico usado como lixão no Município de Cáceres,
Estado de Mato Grosso. Revista Brasileira de Geociências, v. 41, p. 539-548, 2011. https://doi.org/10.25249/0375-7536.2011413539548
Baig, J. A.; Kazi, T. G.; Shah, A. Q.; Arain, M. B.; Afridi, H. I.; Khan, S.; Kandhro, G. A.; Naeemullah; Soomro, A. S.
Evaluating the accumulation of arsenic in maize (Zea mays L.) plants from its growing media by cloud point extraction.
Food and Chemical Toxicology, v. 48, no. 11, p. 3051-3057, 2010. https://doi.org/10.1016/j.fct.2010.07.043
Bergqvist, C.; Greger, M. Arsenic accumulation and speciation in plants from different habitats. Applied Geochemistry,
v. 27, no. 3, p. 615-622, 2012. https://doi.org/10.1016/j.apgeochem.2011.12.009
Bidone, E.; Cesar, R.; Santos, M. C.; Sierpe, R.; Silva-Filho, E. V.; Kutter, V.; Silva, L. I. D.; Castilhos, Z. Mass balance
of arsenic fluxes in rivers impacted by gold mining activities in Paracatu (Minas Gerais State, Brazil). Environmental Science
and Pollution Research, v. 25, no. 9, p. 9085-9100, 2018. https://doi.org/10.1007/s11356-018-1215-z
Bolea-Fernandez, E.; Balcaen, L.; Resano, M.; Vanhaecke, F. Interference-free determination of ultra-trace concentrations of
arsenic and selenium using methyl fluoride as a reaction gas in ICP-MS/MS. Analytical and Bioanalytical Chemistry,
v. 407 p. 919-929, 2015. https://doi.org/10.1007/s00216-014-8195-8
Borba, R. P.; Figueiredo, B. R.; Cavalcanti, J. A. Arsênio na água subterrânea em Ouro Preto e Mariana,
Quadrilátero Ferrífero (MG). Rem: Revista Escola de Minas, v. 57, no. 1, p. 45-51, 2004. https://doi.org/10.1590/S0370-44672004000100009
Borba, R. P.; Figueiredo, B. R.; Matschullat, J. Geochemical distribution of arsenic in waters, sediments and weathered gold
mineralized rocks from Iron Quadrangle, Brazil. Environmental Geology, v. 44, p. 39-52, 2003. https://doi.org/10.1007/s00254-002-0733-6
Brasil. CONAMA Resolution 357, March 17, 2005. Establishes provisions for the classification of water bodies as well
as environmental directives for their framework, establishes conditions and standards for effluent releases and makes other
provisions. Available from: <http://www2.mma.gov.br/port/conama/processos/61AA3835/CONAMA-ingles.pdf#page=300>.
Accessed on: Oct. 13, 2018.
Brasil. CONAMA Resolution 420, December 28, 2009. Establishes provisions for the criteria and guiding values regarding
soil quality and the presence of chemical substances and establishes directives for the environmental management of contaminated
areas by those substances due to anthropic practices. Available from: <http://www2.mma.gov.br/port/conama/processos/61AA3835/CONAMA-ingles.pdf#page=748>.
Accessed on: Oct. 15, 2018.
Brasil. CONAMA Resolution 430, May 13, 2011. Provisions the conditions and standards of effluents and complements and
changes Resolution 357 from March 17, 2005 issued by the National Environment Council (CONAMA). Available from: <http://www2.mma.gov.br/port/conama/processos/61AA3835/CONAMA-ingles.pdf#page=339>.
Accessed on: Oct. 16, 2018.
Brasil. Portaria de Consolidação no 5, de 28 de setembro de 2017. Consolidação
das normas sobre as ações e os serviços de saúde do Sistema Único de Saúde. Available
from: <https://portalarquivos2.saude.gov.br/images/pdf/2018/marco/29/PRC-5-Portaria-de-Consolida----o-n---5--de-28-de-setembro-de-2017.pdf>.
Accessed on: Oct. 16, 2018.
Bundschuh, J.; Litter, M. I.; Parvez, F.; Román-Ross, G.; Nicolli, H. B.; Jean, J.-S.; Liu, C.-W.; López, D.; Armienta, M. A.;
Guilherme, L. R. G.; Cuevas, A. G.; Cornejo, L.; Cumbal, L.; Toujaguez, R. One century of arsenic exposure in Latin America: A review
of history and occurrence from 14 countries. Science of The Total Environment, v. 429, p. 2-35, 2012. https://doi.org/10.1016/j.scitotenv.2011.06.024
Cheng, H.; Shen, L.; Liu, J.; Xu, Z.; Wang, Y. Coupling nanoliter high-performance liquid chromatography to inductively coupled plasma
mass spectrometry for arsenic speciation. Journal of Separation Science, v. 41, p. 1524-1531, 2018. https://doi.org/10.1002/jssc.201701178
Costa, R. V. F.; Leite, M. G. P.; Mendonça, F. P. C.; Nalini Jr., H. A. Geochemical mapping of arsenic in surface waters and
stream sediments of the Quadrilátero Ferrífero, Brazil. Rem: Revista Escola de Minas, v. 68, p. 43-51, 2015.
https://doi.org/10.1590/0370-44672015680077
De La Cruz, A.; Ferreira, L.; Andrade, V.; Gioda, A. Biomonitoring of toxic elements in plants collected near leather tanning industry.
Journal of the Brazilian Chemical Society, v. 30, p. 256-264, 2018. https://doi.org/10.21577/0103-5053.20180174
Deschamps, E.; Ciminelli, V. S. T.; Lange, F. T.; Matschullat, J.; Raue, B.; Schmidt , H. Soil and sediment geochemistry of the Iron
Quadrangle, Brazil: The case of arsenic. Journal of Soils Sediments, v. 2, no. 4, p. 216-222, 2002. https://doi.org/10.1007/BF02991043
Gallego Ríos, S. E.; Ramírez, C. M.; López, B. E.; Macías, S. M.; Leal, J.; Velásquez, C. M.
Evaluation of mercury, lead, arsenic, and cadmium in some species of fish in the Atrato River Delta, Gulf of Urabá,
Colombian Caribbean. Water, Air & Soil Pollution, v. 229, p. 275, 2018. https://doi.org/10.1007/s11270-018-3933-8
García-Rico, L.; Meza-Figueroa, D.; Jay Gandolfi, A.; Rivero, C. I.; Martínez-Cinco, M. A.; Meza-Montenegro, M. M.
Health risk assessment and urinary excretion of children exposed to arsenic through drinking water and soils in Sonora, Mexico.
Biological Trace Element Research, v. 187, no. 1, p. 9-21, 2019. https://doi.org/10.1007/s12011-018-1347-5
Grochau, I. H.; Caten, C. S.; Camargo Forte, M. M. Current American landscape in laboratory accreditation according to ISO/IEC 17025.
Accreditation and Quality Assurance, v. 22, no. 2, p. 57-62, 2017. https://doi.org/10.1007/s00769-017-1248-x
Gürkan, R.; Kir, U.; Altunay, N. Development of a simple, sensitive and inexpensive ion-pairing cloud point extraction approach
for the determination of trace inorganic arsenic species in spring water, beverage and rice samples by UV–Vis spectrophotometry.
Food Chemistry, v. 180, p. 32-41, 2015. https://doi.org/10.1016/j.foodchem.2015.01.142
Gürleyük, H.; Tyson, J. F.; Uden, P. C. Determination of extractable arsenic in soils using slurry sampling-on-line microwave
extraction-hydride generation-atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, v. 55, no. 7,
p. 935-942, 2000. https://doi.org/10.1016/S0584-8547(00)00196-8
Hassanpoor, S.; Khayatian, G.; Azar, A. R. J. Ultra-trace determination of arsenic species in environmental waters, food and biological
samples using a modified aluminum oxide nanoparticle sorbent and AAS detection after multivariate optimization. Microchimica Acta,
v. 182, no. 11/12, p. 1957-1965, 2015. https://doi.org/10.1007/s00604-015-1532-6
Hung, D. Q.; Nekrassova, O.; Compton, R. G. Analytical methods for inorganic arsenic in water: a review. Talanta, v. 64, p. 269-277,
2004. https://doi.org/10.1016/j.talanta.2004.01.027
Inmetro - Instituto Nacional de Metrologia, Qualidade e Tecnologia. Consulta ao Catálogo da RBLE. 2018. Available from:
<http://www.inmetro.gov.br/laboratorios/rble/>.
Accessed on: Jul. 24, 2018.
Kaya, G.; Turkoglu, S. Bioaccumulation of heavy metals in various tissues of some fish species and green tiger shrimp
(Penaeus semisulcatus) from Iskenderun Bay, Turkey, and risk assessment for human health. Biological Trace
Element Research, v. 180, no. 2, p. 314-326, 2017. https://doi.org/10.1007/s12011-017-0996-0
Khan, N.; Ryu, K. Y.; Choi, J. Y.; Nho, E. Y.; Habte, G.; Choi , H.; Kim, M. H.; Park, K. S.; Kim, K. S. Determination
of toxic heavy metals and speciation of arsenic in seaweeds from South Korea. Food Chemistry, v. 169, p. 464-470,
2015. https://doi.org/10.1016/j.foodchem.2014.08.020
Kilic, S.; Cengiz, M. F.; Kilic, M. Monitoring of metallic contaminants in energy drinks using ICP-MS. Environmental
Monitoring and Assessment, v. 190, p. 202, 2018. https://doi.org/10.1007/s10661-018-6590-x
Kim, H.-R.; Kim, K.-H.; Yu, S.; Moniruzzaman, M.; Hwang, S.-I. ; Lee, G.-T.; Yuna, S.-T. Better assessment of the distribution
of As and Pb in soils in a former smelting area, using ordinary co-kriging and sequential Gaussian co-simulation of portable
X-ray fluorescence (PXRF) and ICP-AES data. Geoderma, v. 341, p. 26-38, 2019. https://doi.org/10.1016/j.geoderma.2019.01.031
Komorowicz, I.; Barałkiewicz, D. Determination of total arsenic and arsenic species in drinking water, surface water,
wastewater, and snow from Wielkopolska, Kujawy-Pomerania, and Lower Silesia Provinces, Poland. Environmental Monitoring
and Assessment, v. 188, 2016. https://doi.org/10.1007/s10661-016-5477-y
Lee, H. G.; Kwon, J. Y.; Chung, D. S. Sensitive arsenic speciation by capillary electrophoresis using UV absorbance detection
with on-line sample preconcentration techniques. Talanta, v. 181, p. 366-372, 2018. https://doi.org/10.1016/j.talanta.2018.01.034
Liu, G.; Cai, Y. Studying arsenite–humic acid complexation using size exclusion chromatography–inductively coupled plasma mass
spectrometry. Journal of Hazardous Materials, v. 262, p. 1223-1229, 2013. https://doi.org/10.1016/j.jhazmat.2012.05.043
Liu, Q.; Lu, X.; Peng, H.; Popowich, A.; Tao, J.; Uppal, J. S.; Yan, X.; Boe, D.; Le, X. C. Speciation of arsenic: A review of
phenylarsenicals and related arsenic metabolites. TrAC Trends in Analytical Chemistry, v. 104, p. 171-182, 2018.
https://doi.org/10.1016/j.trac.2017.10.006
Ma, J.; Sengupta, M. K.; Yuan, D.; Dasgupta, P. K. Speciation and detection of arsenic in aqueous samples: A review of recent
progress in non-atomic spectrometric methods. Analytica Chimica Acta, v. 831, p. 1-23, 2014. https://doi.org/10.1016/j.aca.2014.04.029
Ma, L.; Wang, L.; Jia, Y.; Yang, Z. Arsenic speciation in locally grown rice grains from Hunan Province, China: Spatial distribution
and potential health risk. Science of the Total Environment, v. 557-558, p. 438-444, 2016. https://doi.org/10.1016/j.scitotenv.2016.03.051
Machado, C. S.; Fregonesi, B. M.; Alves, R. I. S.; Tonani, K. A. A.; Sierra, J.; Martinis, B. S.; Celere, B. S.; Mari, M.; Schuhmacher,
M.; Nadal, M.; Domingo, J. L.; Segura-Muñoz, S. Health risks of environmental exposure to metals and herbicides in the Pardo River,
Brazil. Environmental Science and Pollution Research, v. 24, p. 20160-20172, 2017. https://doi.org/10.1007/s11356-017-9461-z
Makowska, D.; Strugala, A.; Wierońska, F.; Bacior, M. Assessment of the content, occurrence, and leachability of arsenic, lead,
and thallium in wastes from coal cleaning processes. Environmental Science and Pollution Research, v. 26, p. 8418-8428, 2018.
https://doi.org/10.1007/s11356-018-3621-7
Moe, B.; Peng, H.; Lu, X.; Chen, B.; Chen, L. W. L.; Gabos, S.; Li, X.-F.; Le, C. Comparative cytotoxicity of fourteen trivalent and
pentavalent arsenic species determined using real-time cell sensing. Journal of Environmental Sciences, v. 49, p. 113-124, 2016.
https://doi.org/10.1016/j.jes.2016.10.004
Nielsen, S. S.; Petersen, L. R.; Kjeldsen, P.; Jakobsen, R. Amendment of arsenic and chromium polluted soil from wood preservation by
iron residues from water treatment. Chemosphere, v. 84, p. 383-389, 2011. https://doi.org/10.1016/j.chemosphere.2011.03.069
Oliveira, R. M.; Antunes, A. C. N.; Vieira, M. A.; Medina, A. L.; Ribeiro, A. S. Evaluation of sample preparation methods for the
determination of As, Cd, Pb, and Se in rice samples by GF AAS. Microchemical Journal, v. 124, p. 402-409, 2016.
https://doi.org/10.1016/j.microc.2015.09.018
Ono, F. B.; Guilherme, L. R. G.; Penido, E. S.; Penido, E. S.; Carvalho, G. S.; Hale, B.; Toujaguez, R.; Bundschuh, J. Arsenic
bioaccessibility in a gold mining area: A health risk assessment for children. Environmental Geochemistry and Health,
v. 34, p. 457-465, 2012. https://doi.org/10.1007/s10653-011-9444-9
Oroian, M.; Prisacaru, A.; Hretcanu, E. C.; Stroe, S.-G.; Leahu, A.; Buculei, A. Heavy metals profile in honey as a potential
indicator of botanical and geographical origin. International Journal of Food Properties, v. 19, n. 8, p. 1825-1836,
2016. https://doi.org/10.1080/10942912.2015.1107578
Paye, H. D. S.; Mello, J. W. V.; Abrahão, W. A. P.; Fernandes Filho, E. I.; Dias, L. C. P.; Castro, M. L. O.; Melo, S. B.;
França, M. M. Valores de referência de qualidade para metais pesados em solos no Estado do Espírito Santo.
Revista Brasileira de Ciência do Solo, v. 34, no. 6, p. 2041-2051, 2010. https://doi.org/10.1590/S0100-06832010000600028
Pereira, E. R.; Almeida, T. S.; Borges, D. L. G.; Carasek, E.; Welz, B.; Feldmann, J.; Menoyo, J. C. Investigation of chemical
modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic
absorption spectrometry. Talanta, v. 150, p. 142-147, 2016. https://doi.org/10.1016/j.talanta.2015.12.036
Pierangeli, M. A. P.; Guilherme, L. R. G.; Carvalho, G. S.; Carvalho, C. A.; Silva, C. A.; Pierangeli, L. M. P.
Elementos-traço em áreas de vegetação nativa e agricultura intensiva do Estado de
Mato Grosso determinados por fluorescência de raios-x por reflexão total. Revista Brasileira
de Ciência do Solo, v. 39, n. 4, p. 1048-1057, 2015. https://doi.org/10.1590/01000683rbcs20140373
Raber, G.; Stock, N.; Hanel, P.; Murko, M.; Navratilova, J.; Francesconi, K. A. An improved HPLC–ICPMS method for
determining inorganic arsenic in food: Application to rice, wheat and tuna fish. Food Chemistry, v. 134,
p. 524-532, 2012. https://doi.org/10.1016/j.foodchem.2012.02.113
Rede Metrológica do Rio Grande do Sul. Laboratórios Reconhecidos - Rede Metrológica. 2018. Available
from: <http://www.redemetrologica.com.br/laboratorios-reconhecidos>.
Accessed on: Jul. 26, 2018
Rezende, P. S.; Costa, L. M.; Windmöller, C. C. Arsenic mobility in sediments from Paracatu River Basin, MG, Brazil.
Archives of Environmental Contamination and Toxicology, v. 68, p. 588-602, 2015. https://doi.org/10.1007/s00244-015-0134-y
Rezende, P. S.; Moura, P. A. S.; Durão Jr., W. A.; Nascentes, C. C.; Windmöller, C. C.; Costa, L. M. Arsenic
and Mercury mobility in Brazilian sediments from the São Francisco River Basin. Journal of the Brazilian Chemical
Society, v. 22, p. 910-918, 2011. https://doi.org/10.1590/S0103-50532011000500014
RMMG - Rede Metrológica de Minas Gerais. Laboratórios reconhecidos. 2018. Available from:
<https://www.rmmg.com.br/laboratoriosreconhecidos>.
Accessed on: Jul. 25, 2018.
Sankararamakrishnan, N.; Mishra, S. A comprehensive review on various analytical methods for the determination of inorganic
and organic arsenic in environmental samples. In: Gupta T.; Agarwal, A.; Agarwal, R. L. N. (Ed.). Environmental contaminants.
Energy, environment, and sustainability. Singapore: Springer, 2018. p. 21-41. https://doi.org/10.1007/978-981-10-7332-8_2
Santos, G. R.; Pales, R. C.; Rodrigues, S. G. Desigualdades regionais no Brasil - 1991-2010. InterSciencePlace, v. 1,
no. 31, p. 145-173, 2014.
Santos, Q. O.; Silva Junior, M. M.; Lemos, V. A.; Ferreira, S. L. C.; Andrade, J. B. An online preconcentration system for
speciation analysis of arsenic in seawater by hydride generation flame atomic absorption spectrometry. Microchemical
Journal, v. 143, p. 175-180, 2018. https://doi.org/10.1016/j.microc.2018.08.004
Silva, D.; Bellato, C.; Marques Neto, J.; Fontes, M. Arsenic and trace metals in water and sediment of the Velhas River,
Southeastern Iron Quadrangle Region, Minas Gerais, Brazil. Quimica Nova, v. 41, p. 1011-1018, 2018. https://doi.org/10.21577/0100-4042.20170275
Souza, L. C.; Campos, M. L.; Reichert, G.; Moura, C. N. Teores de arsênio em solos de três regiões do
Estado de Santa Catarina. Revista Ambiente & Água, v. 11, p. 135-144, 2016. https://doi.org/10.4136/ambi-agua.1746
Varejão, E. V. V.; Bellato, C. R.; Fontes, M. P. F.; Mello, J. W. V. Arsenic and trace metals in river water and
sediments from the Southeast portion of the Iron Quadrangle, Brazil. Environmental Monitoring and Assessment,
v. 172, no. 1/4, p. 631-642, 2011. https://doi.org/10.1007/s10661-010-1361-3
Wang, Y.; Li, Y.; Lv, K.; Chen, X.; Yu, X. A simple and sensitive non-chromatographic method for quantification of four
arsenic species in rice by hydride generation-atomic fluorescence spectrometry. Spectrochimica Acta Part B: Atomic
Spectroscopy, v. 149, p. 197-202, 2018. https://doi.org/10.1016/j.sab.2018.08.012
Wang, Z.; Cui, Z.; Xu, X. Lysosomal membrane response of the earthworm, Eisenia fetida, to arsenic species exposure
in OECD soil. RSC Advances, v. 6, p. 23498-23507, 2016. https://doi.org/10.1039/C5RA27725F
Waterlot, C.; Douay, F. Arsenic mobility and speciation in contaminated kitchen garden and lawn soils: An evaluation of water
for assessment of As phytoavailability. Environmental Science and Pollution Research, v. 22, p. 6164-6175, 2015.
https://doi.org/10.1007/s11356-014-3829-0
Wolf, R. E.; Morman, S. A.; Hageman, P. L.; Hoefen, T. M.; Plumlee, G. S. Simultaneous speciation of arsenic, selenium, and
chromium: Species stability, sample preservation, and analysis of ash and soil leachates. Analytical and Bioanalytical
Chemistry, v. 401, p. 2733-2745, 2011. https://doi.org/10.1007/s00216-011-5275-x
Yogarajah, N.; Tsai, S. S. H. Detection of trace arsenic in drinking water: Challenges and opportunities for microfluidics.
Environmental Science: Water Research & Technology, v. 1, p. 426-447, 2015. https://doi.org/10.1039/C5EW00099H
Zhong, L.; Ni, R.; Zhang, L.; He, Z.; Zhou, H.; Li, L. Determination of total arsenic in soil by gas chromatography after
pyrolysis. Microchemical Journal, v. 146, p. 568-574, 2019. https://doi.org/10.1016/j.microc.2019.01.057
Zhu, Q.; Cui, H.; Dong, L.; Shan, B.; Han, T.; Li, H.; Cai, F. Speciation of arsenic in rice by ion chromatography with
online anion suppression and inductively coupled plasma mass spectrometry. Analitical Letters, v. 50, p. 1040-1048,
2017. https://doi.org/10.1080/00032719.2016.1203927
ISSN 2359-1412