Vol. 5, No 11, p. 833-847 - 31 dez. 2018
Métodos físicos e químicos para o tratamento de efluentes
Suéllen Tonatto Ferrazzo , Débora Ferasso , Marluci Marangoni , Mateus Velho dos Santos , Orlando de Paris Junior , Taís Carla Gaspareto , Gean Delise Leal Pasquali Vargas
Resumo
A busca por processos de tratamento de efluentes que sejam eficientes e garantam a segurança à saúde pública e ao meio ambiente tem sido um grande desafio nas últimas décadas, devido à presença de microrganismos persistentes e micropoluentes orgânicos e inorgânicos que resistem aos tratamentos convencionais. Assim, as tecnologias alternativas de tratamento de efluentes vêm sendo aplicadas em associação aos tratamentos primários e secundários, para alcançar maiores reduções da carga de poluentes, utilizando menor espaço físico e consumo de energia elétrica, bem como menor produção de lodo. Neste trabalho, buscou-se realizar um estudo da arte através de uma revisão dos métodos físicos e químicos para o tratamento de efluentes: membranas de filtração, eletrocoagulação, adsorção, troca iônica, processos oxidativos avançados, ozonização e precipitação química, considerando o princípio de funcionamento suas vantagens, desvantagens e aplicações de cada técnica.
Palavras-chave
Efluentes; Métodos físicos e químicos; Tecnologias alternativas.
Abstract
Physico-chemical methods for the treatment of effluents. The search for effluent treatment processes
that are efficient and guarantee safety to public health and the environment has been a great challenge in
the last decades due to the presence of persistent microorganisms and organic and inorganic micropollutants
that resist conventional treatments. Thus, alternative technologies for effluent treatment have been applied
in association with primary and secondary treatments, to achieve greater reductions in pollutant load, using
less space and electrical energy consumption, as well as lower sludge production. In this work, a study of
the art was made through a review of the physical-chemical methods for the treatment of effluents: filtration
membranes, electrocoagulation, adsorption, ion exchange, advanced oxidative processes, ozonization and chemical
precipitation, considering the principle of advantages, disadvantages and applications of each technique.
Keywords
Wastewater; Physical-chemical methods; Alternative technologies.
DOI
10.21438/rbgas.051103
Texto completo
PDF
References
Abdel-Raouf, N.; Al-Homaidan, A. A.; Ibraheem, I. B. M. Microalgae and wastewater treatment.
Adewuyi, Y. G. Sonochemistry: Environmental science and engineering applications. Industrial & Engineering
Chemistry Research, v. 40, n. 22, p. 4681-4715, 2001. https://doi.org/10.1021/ie010096l
Aguiar, A. O.; Andrade, L. H.; Ricci, B. C.; Pires, W. L.; Miranda, G. A.; Amaral, M. C. S. Gold acid mine drainage
treatment by membrane separation processes: An evaluation of the main operational conditions. Separation and
Purification Technology, v. 170, p. 360-369, 2016. https://doi.org/10.1016/j.seppur.2016.07.003
Aguiar, A.; Andrade, L.; Grossi, L.; Pires, W.; Amaral, M. Acid mine drainage treatment by nanofiltration: A study of
membrane fouling, chemical cleaning, and membrane ageing. Separation and Purification Technology, v. 192, p.
185-195, 2018. https://doi.org/10.1016/j.seppur.2017.09.043
Al-Shannag, M.; Al-Qodah, Z.; Bani-Melhem, K.; Qtaishat, M. R.; Alkasrawi, M. Heavy metal ions removal from metal
plating wastewater using electrocoagulation: Kinetic study and process performance. Chemical Engineering Journal,
v. 260, p. 749-756, 2015. https://doi.org/10.1016/j.cej.2014.09.035
Alvarez-Ayuso, A. E.; García-Sánchez, A.; Querol, X. Purification of metal electroplating wastewaters
using zeolites. Water Research, v. 37, n. 20, p. 4855-4862, 2003. https://doi.org/10.1016/j.watres.2003.08.009
Alvarino, T.; Suarez, S.; Lema, J.; Omil, F. Understanding the sorption and biotransformation of organic micropollutants
in innovative biological wastewater treatment technologies. Science of the Total Environment, v. 615, p. 297-306,
2018. https://doi.org/10.1016/j.scitotenv.2017.09.278
Amado-Piña, D. A.; Roa-Morales, G.; Barrera-Díaz, C.; Balderas-Hernandez, P.; Romero, R.; Campo, E. M.;
Natividad, R. Synergic effect of ozonation and electrochemical methods on oxidation and toxicity reduction: Phenol
degradation. Fuel, v. 198, p. 82-90, 2017. https://doi.org/10.1016/j.fuel.2016.10.117
Amaral, C. N. R.; Feiteira, F. N.; Cruz, R. C.; Cravo, V. O.; Cassella, R. J.; Pacheco, W. F. Removal of basic violet
3 dye from aqueous media using a steel industry residue as solid phase. Journal of Environmental Chemical
Engineering, v. 4, p. 4148-4193, 2016. https://doi.org/10.1016/j.jece.2016.09.023
Andrade, L. H.; Aguiar, A. O.; Pires, W. L. Miranda, G. A.; Teixeira, L. P. T.; Almeida, G. C. C.; Amaral, M. C. S.
Nanofiltration and reverse osmosis applied to gold mining effluent treatment and reuse. Brazilian Journal of
Chemical Engineering, v. 34, n. 1, p. 93-107, 2017b. https://doi.org/10.1590/0104-6632.20170341s20150082
Andrade, L. H.; Ricci, B. C.; Grossi, L. B.; Pires, W. L.; Aguiar, A. O.; Amaral, M. C. S. Nanofiltration applied in
gold mining effluent treatment: Evaluation of chemical cleaning and membrane stability.Chemical Engineering Journal,
v. 323, p. 545-556, 2017a. https://doi.org/10.1016/j.cej.2017.04.116
Andrioli, E.; Mella, B.; Gutterres, M. A tecnologia de ozonização no tratamento de efluentes de curtume.
Anais do II Congresso Brasileiro de Engenharia Química, Florianópolis, p. 1-8, 2014.
Araújo, K. S.; Antonelli, R.; Gaydeczka, B.; Granato, A. C.; Malpass, G. R. P. Processos oxidativos avançados:
uma revisão de fundamentos e aplicações no tratamento de águas residuais urbanas e efluentes
industriais. Revista Ambiente & Água, v. 11, n. 2, p. 387-401, 2016. https://doi.org/10.4136/ambi-agua.1862
Araújo, K. S.; Malpass, G. R. P.; Urias, P. M.; Cunha, P. C. R. Processos oxidativos avançados: fundamentos
e aplicações no tratamento de águas residuais e efluentes industriais. Anais do V Congresso Brasileiro
de Gestão Ambiental, Belo Horizonte, IBEAS, 2014.
Babaei, A. A.; Kakavandi, B.; Rafiee, M.; Kalantarhormizi, F.; Purkaram, I.; Ahmadi, E.; Esmaeili, S. Comparative treatment
of textile wastewater by adsorption, Fenton, UV-Fenton, and US-Fenton using magnetic nanoparticles-functionalized carbon
(MNPs@c). Journal of Industrial and Engineering Chemistry, v. 56, p. 163-174, 2017. https://doi.org/10.1016/j.jiec.2017.07.009
Babilas, D.; Dydo, P. Selective zinc recovery from electroplating wastewaters by electrodialysis enhanced with complex
formation. Separation and Purification Technology, v. 192, p. 419-428, 2018. https://doi.org/10.1016/j.seppur.2017.10.013
Badruzzaman, M.; Oppenheimer, J.; Adham, S.; Kumar, M. Innovative beneficial reuse of reverse osmosis concentrate using
bipolar membrane electrodialysis and electrochlorination processes. Journal of Membrane Science, v. 326, n. 2,
p. 392-399, 2009. https://doi.org/10.1016/j.memsci.2008.10.018
Bassala, H. D.; Dedzo, G. K.; Bememba, C. B. N.; Seumo, P. M. T.; Dazie, J. D.; Nanseu-Njiki, C. P.; Ngameni, E.
Investigation of the efficiency of a designed electrocoagulation reactor: Application for dairy effluent treatment.
Process Safety and Environmental Protection, v. 111, p. 122-127, 2017. https://doi.org/10.1016/j.psep.2017.07.002
Bell, E. A.; Poynor, T. E.; Newhart, K. B.; Regnery, J.; Coday, B. D.; Cath, T. Y. Produced water treatment using
forward osmosis membranes: Evaluation of extended-time performance and fouling. Journal of Membrane Science,
v. 525, p. 77-88, 2017. https://doi.org/10.1016/j.memsci.2016.10.032
Ben, W.; Wang, J.; Cao, R.; Yang, M.; Zhang, Y. Qiang, Z. Distribution of antibiotic resistance in the effluents of
ten municipal wastewater treatment plants in China and the effect of treatment processes. Chemosphere, v. 172,
p. 392-398, 2017. https://doi.org/10.1016/j.chemosphere.2017.01.041
Benatti, C. T.; Tavares, C. R. G.; Lenzi, E. Sulfate removal from waste chemicals by precipitation. Journal of
Environmental Management, v. 90, n. 9, p. 504-511, 2009. https://doi.org/10.1016/j.jenvman.2007.12.006
Bengani-Lutz, P.; Zaf, R. D.; Culfaz-Emecem, Z.; Asatekin, A. Extremely fouling resistant zwitterionic copolymer
membranes with ~ 1 nm pore size for treating municipal, oily and textile wastewater streams. Journal of Membrane
Science, v. 543, p. 184-194, 2017. https://doi.org/10.1016/j.memsci.2017.08.058
Bernardi, F.; Zadinelo, I. V.; Alves, H. J.; Meurer, F.; Santos, L. D. Chitins and chitosans for the removal of
total ammonia of aquaculture effluents. Aquaculture, v. 483, p. 203-201, 2018. https://doi.org/10.1016/j.aquaculture.2017.10.027
Bortoluzzi, A. C.; Faitão, J. A.; Di Luccio, M.; Dallago, R. M.; Steffens, J.; Zabot, G. L.; Tres, M. V.
Dairy wastewater treatment using integrated membrane systems. Journal of Environmental Chemical Engineering,
v. 5, n. 5, p. 4819-4827, 2017. https://doi.org/10.1016/j.jece.2017.09.018
Brillas, E.; Sires, I.; Oturan, M. A. Electro-fenton process and related electrochemical technologies based on
Fenton's reaction chemistry. Chemical Reviews, v. 109, v. 12, p. 6570-6631, 2009. https://doi.org/10.1021/cr900136g
Caetano, M.; Valderrama, C.; Farran, A.; Cortina, L. J. Phenol removal from aqueous solution by adsorption and
ion exchange mechanisms onto polymeric resins. Journal of Colloid and Interface Science, v. 338, n. 2,
p. 402-409, 2009. https://doi.org/10.1016/j.jcis.2009.06.062
Centenaro, G. S. N. M.; Facin, B. R.; Valério, A.; Souza, A. A. U.; Silva, A.; Oliveira, J. V.; Oliveira, D.
Application of polyurethane foam chitosan-coated as a low-cost adsorbent in the effluent treatment. Journal of
Water Process Engineering, v. 20, p. 201-206, 2017. https://doi.org/10.1016/j.jwpe.2017.11.008
Chakinala, A. G.; Gogate, P. R.; Burgess, A. E.; Bremner, D. H. Industrial wastewater treatment using hydrodynamic
cavitation and heterogeneous advanced Fenton processing. Chemical Engineering Journal, v. 152, n. 2/3,
p. 498-502, 2009. https://doi.org/10.1016/j.cej.2009.05.018
Chen, G. Electrochemical technologies in wastewater treatment. Separation and Purification Technology, v. 38,
n. 1, p.11-41, 2004. https://doi.org/10.1016/j.seppur.2003.10.006
Chou, S.; Shi, L.; Wang, R.; Tang, C. Y.; Qiu, C.; Fane, A. G. Characteristics and potential applications of a novel
forward osmosis hollow fiber membrane. Desalination, v. 261, n. 3, p. 365-372, 2010. https://doi.org/10.1016/j.desal.2010.06.027
Cingolani, D.; Eusebi, A. L.; Battistoni, P. Osmosis process for leachate treatment in industrial platform: Economic
and performances evaluations to zero liquid discharge. Journal of Environmental Management, v. 203, part 2,
p. 782-790, 2017. https://doi.org/10.1016/j.jenvman.2016.05.012
Combernoux, N.; Schrive, L.; Labed, V.; Wyart, Y.; Carretier, E.; Moulin, P. Treatment of radioactive liquid effluents
by reverse osmosis membranes: From lab-scale to pilot-scale. Water Research, v. 123, p. 311-320, 2017.
https://doi.org/10.1016/j.watres.2017.06.062
Daneshvar, N.; Oladegaragoze, A.; Djafarzadeh, N. D. Decolorization of basic dye solutions by electrocoagulation: An
investigation of the effect of operational parameters. Journal of Hazardous Materials, v. 129, n. 1/3, p. 116-122,
2006. https://doi.org/10.1016/j.jhazmat.2005.08.033
Delgado, L. F.; Charles, P.; Glucina, K.; Morlay, C. The removal of endocrine disrupting compounds and cyanobacterial
toxins during drinking water preparation using activated carbon: A review. Science of The Total Environmental,
v. 435-436, n. 1, p. 509-525, 2012. https://doi.org/10.1016/j.scitotenv.2012.07.046
Dou, W.; Zhou, Z.; Jiang, L.; Jiang, A.; Huang, R.; Tian, X.; Zhang, W.; Chen, D. Sulfate removal from wastewater using
ettringite precipitation: Magnesium ion inhibition and process optimization. Journal of Environmental Management,
v. 196, p. 518-526, 2017. https://doi.org/10.1016/j.jenvman.2017.03.054
Duong, P. H. H.; Chung, T.-S. Application of thin film composite membranes with forward osmosis technology for the
separation of emulsified oil-water. Journal of Membrane Science, v. 452, p. 117-126, 2014. https://doi.org/10.1016/j.memsci.2013.10.030
Edokpayi, J. N.; Odiyo, J. O.; Durowoju, O. D. Impact of wastewater on surface water quality in developing countries:
A case study of South Africa. In: Tutu, H. Water quality. London: Intech, 2017. p. 401-416.
El-Taliawy, H.; Ekblad, M.; Nilsson, F.; Hagman, M.; Paxeus, N.; Jönsson, K.; Cimbritz, M.; Jansen, J. L. C.; Bester,
K. Ozonation efficiency in removing organic micro-pollutants from wastewater with respect to hydraulic loading rates
and diferente wastewaters. Chemical Engineering Journal, v. 325, p. 310-321, 2017. https://doi.org/10.1016/j.cej.2017.05.019
Fernandes, A.; Pacheco, M. J.; Ciríaco, L.; Lopes, A. Review on the electrochemical processes for the treatment
of sanitary landfill leachates: Present and future. Applied Catalysis B: Environmental, v. 176-177, p. 183-200,
2015. https://doi.org/10.1016/j.apcatb.2015.03.052
Fioreze, M.; Santos, E. P.; Schmachtenberg, N. Processos oxidativos avançados: fundamentos e aplicação
ambiental. Revista Eletrônica em Gestão, Educação e Tecnologia Digital, v. 18, n. 1,
p. 79-91, 2014. https://doi.org/10.5902/2236117010662
Fosso-Kankeu, E.; Mittal, H.; Waanders, F.; Ray, S. S. Thermodynamic properties and adsorption behavior of hydrogel
nanocomposites for cadmium removal from mine effluents. Journal of Industrial and Engineering Chemistry,
v. 48, p. 151-161, 2017. https://doi.org/10.1016/j.jiec.2016.12.033
Freire, R. S.; Kunz, A.; Durán, N. Some chemical and toxicological aspects about paper mill effluent treatment
with ozone. Environmental Technology, v. 21, n. 6, p. 717-721, 2000. https://doi.org/10.1080/09593332108618088
Gao, W.; Fatehi, P. Fly ash based adsorbent for treating bleaching effluent of kraft pulping process. Separation and
Purification Technology, v. 195, p. 60-69, 2018. https://doi.org/10.1016/j.seppur.2017.12.002
Gao, Y.; Fang, Z.; Liang, P.; Huang, X. Direct concentration of municipal sewage by forward osmosis and membrane fouling
behavior. Bioresource Technology, v. 247, p. 730-735, 2018. https://doi.org/10.1016/j.biortech.2017.09.145
Garcia-Segura, S.; Ocon, J. D.; Chong, M. N. Electrochemical oxidation remediation of real wastewater effluents: A review.
Process Safety and Environment Protection, v. 113, p. 48-67, 2017. https://doi.org/10.1016/j.psep.2017.09.014
Gomes, J.; Costa, R.; Quinta-Ferreira, R. M.; Martins, R. C. Application of ozonation for pharmaceuticals and personal care
products removal from water. Science of The Total Environment, v. 586, p. 265-283, 2017. https://doi.org/10.1016/j.scitotenv.2017.01.216
Hemmati, F.; Norouzbeigi, R.; Sarbishedh, F.; Shayesteh, H. Malachite green removal using modified sphagnum peat moss as a
low-cost biosorbent: Kinetic, equilibrium and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers,
v. 58, p. 485-489, 2016. https://doi.org/10.1016/j.jtice.2015.07.004
Henze, M.; Harremoes, P.; Arvin, E.; Jansen, J. L. C. Wastewater treatment: Biological and chemical processes. 2 ed.
New York: Springer, 1996.
Hernandez, R.; Zappi, M.; Colluci, F.; Jones, R. Comparing the performance of various advanced oxidation process for treatment
of acetone contaminated water. Journal Hazardous Materials, v. 92, n. 1, p. 33-50, 2002. https://doi.org/10.1016/S0304-3894(01)00371-5
Hickenbottom, K. L.; Hancock, N. T.; Hutchings, N. R.; Appleton, E. W.; Baeudry, E. G.; Xu, P.; Cath, T. Y. Forward osmosis
treatment of drilling mud and fracturing wastewater from oil and gas operations. Desalination, v. 312, p. 60-66, 2013.
https://doi.org/10.1016/j.desal.2012.05.037
Hoigné, J.; Bader, H. The role of hydroxyl radical reactions in ozonation processes inaqueous solutions. Water
Research, v. 10, n. 5, p. 377-386, 1976. https://doi.org/10.1016/0043-1354(76)90055-5
Holt, P. K.; Barton, G. W.; Wark, M.; Mitachell, C. A. A quantitative comparison between chemical dosing and electrocoagulation.
Colloids and Surfaces A: Physicochemical Engineering Aspects, v. 211, n. 2/3, p. 233-248, 2002. https://doi.org/10.1016/S0927-7757(02)00285-6
Hudaib, B.; Gomes, V.; Shi, J.; Zhou, C.; Liu, Z. Poly (vinylidene fluoride)/polyaniline/ MWCNT nanocomposite ultrafiltration
membrane for natural organic matter removal. Separation and Purification Technology, v. 190, p. 143-155, 2018.
https://doi.org/10.1016/j.seppur.2017.08.026
Judd, S. J. The status of industrial and municipal effluent treatment with membrane bioreactor technology. Chemical
Engineering Journal, v. 305, p. 37-45, 2016. https://doi.org/10.1016/j.cej.2015.08.141
Juholin, P.; Kääriäinen, M.-L.; Riihimäki, M.; Sliz, R.; Aguirre, J. L.; Pirilä, M.; Fabritius, T.;
Cameron, D.; Keiski, R. L. Comparison of ALD coated nanofiltration membranes to unmodified commercial membranes in mine
wastewater treatment. Separation and Purification Technology, v. 192, p. 69-77, 2018. https://doi.org/10.1016/j.seppur.2017.09.005
Jung, K.; Hwang, M.; Park, D.; Ahn, K. Combining fluidized metal-impregnated granular activated carbon in three-dimensional
electrocoagulation system: Feasibility and optimization test of color and COD removal from real cotton textile wastewater.
Separation and Purification Technology, v. 146, p. 154-167, 2015. https://doi.org/10.1016%2Fj.seppur.2015.03.043
Karanfil, T.; Kilduff, J. Role of granular activated carbon surface chemistry on the adsorption of organic compounds.
Priority pollutants. Environmental Science Technology, v. 33, n. 18, p. 3217-3224, 1999. https://doi.org/10.1021/es981016g
Kartic, D. N.; Narayana, B. C. A.; Arivazhagan, M. Removal of high concentration of sulfate from pigment industry effluent
by chemical precipitation using barium chloride: RSM and ANN modeling approach. Journal of Environmental Management,
v. 206, p. 69-76, 2018. https://doi.org/10.1016/j.jenvman.2017.10.017
Kumar, P.; Sharma, N.; Ranjan, R.; Kumar, S.; Bhat, Z. F.; Jeong, D. K. Perspective of membrane technology in dairy industry:
A review. Asian-Australasian Journal of Animal Sciences, v. 26, n. 9, p. 1347-1358, 2013. https://doi.org/10.5713/ajas.2013.13082
Li, N.; Whang, P.; Liu, Q.; Cao, H. Microwave enhanced chemical reduction process for nitrite-containing wastewater treatment
using sulfaminic acid. Journal of Environmental Sciences, v. 22, n. 1, p. 56-51, 2010. https://doi.org/10.1016/S1001-0742(09)60074-7
Lin, J.; Ye, W.; Baltaru, M.; Tang, Y. P.; Bernstein, N. J.; Gao, P.; Balta, S.; Vlad, M.; Volodin, A.; Sotto, A.; Luis, P.;
Zydney, A. L.; Bruggen, B. V. Tight ultrafiltration membranes for enhanced separation of dyes and Na2SO4
during textile wastewater treatment. Journal of Membrane Science, v. 514, p. 217-228, 2016. http://doi.org/10.1016/j.memsci.2017.02.005
Liu, G. C.; Yu, S. L.; Yang, H. J.; Hu, J.; Zhang, Y.; He, B.; Li, L.; Liu, Z. Y. Molecular mechanisms of ultrafiltration membrane
fouling in polymer-flooding wastewater treatment: Role of ions in polymeric fouling. Environmental Science & Technology,
v. 50, n. 3, p. 1393-1402, 2016. https://doi.org/10.1021/acs.est.5b04098
Luján-Facundo, M. J.; Soler-Cabezas, J. L. Mendoza-Roca, J. A.; Vicent-Vela, M. C.; Bes-Piá, A.;
Doñate-Hernández, S. A study of the osmotic membrane bioreactor process using a sodium chloride
solution and an industrial effluent as draw solutions. Chemical Engineering Journal, v. 322, p. 603-610,
2017. https://doi.org/10.1016/j.cej.2017.04.062
Luo, A.; Lior, N. Study of advancement to higher temperature membrane distillation. Desalination, v. 419,
p. 88-100, 2017. https://doi.org/10.1016/j.desal.2017.05.020
Marcogliese, D. J.; Blaise, C.; Cyr, D.; Lafontaine, Y.; Fournier; M.; Gagné, F.; Gagnon, C.; Hudon, C. Effects
of a major municipal effluent on the St. Lawrence River: A case study. AMBIO, v. 44, n. 4, p. 257-274, 2015.
https://doi.org/10.1007/s13280-014-0577-9
Martins, P. J. M.; Reis, P. M.; Martins, R. C.; Guando-Ferreira, L. M.; Quinta-Ferreira, R. M. Iron recovery from the
Fenton's treatment of winery effluent using an ion-exchange resin. Journal of Molecular Liquids, v. 242,
p. 505-511, 2017. https://doi.org/10.1016/j.molliq.2017.07.041
Masten, S. J.; Davies, S. H. R. The use of ozonation to degrade organic contaminants in wastewaters. Environmental
Science Technology, v. 28, n. 4, p. 180-185, 1994. https://doi.org/10.1021/es00053a718
Mohammad, A. W.; Teow, Y. H.; Ang, W. L.; Chung, Y. T.; Oatley-Radcliffe, D. L.; Hilal, N. Nanofiltration membranes
review: Recent advances and future prospects. Desalination, v. 356, p. 226-254, 2015. https://doi.org/10.1016/j.desal.2014.10.043
Mollah, Y. M. A.; Schennach, R.; Parga, J. R.; Cocke, D. L. Electrocoagulation (EC): Science and applications. Journal
of Hazardous Materials, v. 84, n. 1, p. 29-41, 2001. https://doi.org/10.1016/S0304-3894(01)00176-5
Noor, S. F. M.; Ahmad, N.; Khattak, M. A.; Khan, M. S.; Mukhtar, A.; Kazi, S.; Badshah, S.; Khan, R. Application of Sayong
Ball Clay Membrane Filtration for Ni (II) removal from industrial wastewater. Journal of Taibah University for Science,
v. 11, n. 6, p. 949-954, 2017. https://doi.org/10.1016/j.jtusci.2016.11.005
Oller, I.; Malato, S.; Sánchez-Pérez, J. A. Combination of advanced oxidation processes and biological
treatments for wastewater decontamination: A review. Science of the Total Environment, v. 409, n. 20,
p. 4141-4166, 2011. https://doi.org/10.1016/j.scitotenv.2010.08.061
Ortega, V. M. D.; Ochando-Pulido, J. M.; Martínez-Ferez, A. Ion exchange system for the final purification of
olive mill wastewater: Performance of model vs. real effluent treatment. Process Safety and Environmental Protection,
v. 103, p. 308-314, 2016. https://doi.org/10.1016/j.psep.2016.02.004
Pintar, A.; Batista, J.; Levec, J. Integrated ion exchange/catalytic process for efficient removal of nitrates from
drinking water. Chemical Engineering Science, v. 56, n. 4, p. 1551-1559, 2001. https://doi.org/10.1016/S0009-2509(00)00382-1
Rafraf, I. D.; Lekunberri, I.; Sánchez-Melsió, A.; Aouni, M.; Borrego, C. M.; Balcázar, J. L.
Abundance of antibiotic resistance genes in five municipal wastewater treatment plants in the Monastir Governorate,
Tunisia. Environmental Pollution, v. 219, p. 353-358, 2016. https://doi.org/10.1016/j.envpol.2016.10.062
Rastgar, M.; Shakeri, A.; Bozorg, A.; Salehi, H.; Saadattalab, V. Impact of nanoparticles surface characteristics
on pore structure and performance of forward osmosis membranes. Desalination, v. 421, p. 179-189, 2017.
https://doi.org/10.1016/j.desal.2017.01.040
Ricci, B. C.; Ferreira, C. D.; Aguiar, A. O.; Amaral, M. C. S. Integration of nanofiltration and reverse osmosis
for metal separation and sulfuric acid recovery from gold mining effluent. Separation and Purification Technology,
v. 154, p. 11-21, 2015. https://doi.org/10.1016/j.seppur.2015.08.040
Samartino, J. A.; Khayet, M.; García-Payo, M. C. Reuse of discarded membrane distillation membranes in microfiltration
technology. Journal of Membrane Science, v. 539, p. 273-283, 2017. https://doi.org/10.1016/j.memsci.2017.06.003
Silva, A. J.; Varesche, M. B.; Foresti, E.; Zaiat, M. Sulphate removal from industrial wastewater using a packed-bed
anaerobic reactor. Process Biochemistry, v. 37, p. 927-935, 2002. https://doi.org/10.1016/S0032-9592(01)00297-7
Sivagami, K.; Sakthivel, K. P.; Nambi, I. M. Advanced oxidation processes for the treatment of tannery wastewater.
Journal of Environmental Chemical Engineering, v. 6, p. 3656-3663, 2017. https://doi.org/ 10.1016/j.jece.2017.06.004
Snyder, S. A.; Adham, S.; Redding, A. M.; Cannon, F. S.; De Carolis, J.; Oppenheimer, J.; Wert, E. C.; Yoon, Y. Role
of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination,
v. 202, n. 1/3, p. 156-181, 2007. https://doi.org/10.1016/j.desal.2005.12.052
Srinivasan, S. V.; Rema, T.; Chitra, K.; Balakameswari, K. S.; Suthanthararajan, B.; Maheswari, B. U. Decolourisation
of leather dye by ozonation. Desalination, v. 235, n. 1/3, p. 88-92, 2009. https://doi.org/10.1016/j.desal.2007.07.032
Uslu, G.; Demirci, A.; Regan, J. M. Disinfection of synthetic and real municipal wastewater effluent by flow-through
pulsed UV-light treatment system. Journal of Water Process Engineering, v. 10, p. 89-97, 2016. https://doi.org/10.1016/j.jwpe.2016.02.004
Valverde, L. J.; Lucas, A.; Carmona, M.; Pérez, J. P.; Gozález, M.; Rodríguez, J. F. Minimizing
the environmental impact of the regeneration process of an ion exchange bed charged with transition metals. Separation
and Purification Technology, v. 49, n. 2, p. 167-173, 2006. https://doi.org/10.1016/j.seppur.2005.09.009
Walker, S.; Narbaitz, R. M. Hollow fiber ultrafiltration of Ottawa River water: Floatation versus sedimentation pre-treatment.
Chemical Engineering Journal, v. 288, p. 228-237, 2016. https://doi.org/10.1016/j.cej.2015.11.064
Wojtyniak, B.; Kołodziejczyk, J.; Szaniawska, D. Production of lactic acid by ultrafiltration of fermented whey obtained
in bioreactor equipped with ZOSS membrane. Chemical Engineering Journal, v. 305, p. 28-36, 2016. https://doi.org/10.1016/j.cej.2016.01.048
Xie, L. P.; Fu, F. L.; Tang, B. Research progress in the treatment of complex heavy metal wastewater. Industrial Water
Treatment, v. 32, p. 1-5, 2012. https://doi.org/10.1088/1755-1315/121/3/032022
Xie, M.; Price, W. E.; Nghiem, L. D. Rejection of pharmaceutically active compounds by forward osmosis: Role of solution
pH and membrane orientation. Separation and Purification Technology, v. 93, p. 107-114, 2012. https://doi.org/10.1016/j.seppur.2012.03.030
Yang, T.; Qiao, B.; Li, G.-C.; Yang, Q.-Y. Improving performance of dynamic membrane assisted by electrocoagulation for
treatment of oily wastewater: Effect of electrolytic conditions. Desalination, v. 363, p. 134-143, 2015.
https://doi.org/10.1016/j.desal.2015.01.010
Yetilmezsoy, K.; Ilhan, F.; Sapci-Zengin, Z.; Sakar, S.; Gonullu, M. T. Decolorization and COD reduction of UASB pretreated
poultry manure wastewater by electrocoagulation process: A post-treatment study. Journal of Hazardous Materials,
v. 162, n. 1, p. 120-132, 2009. https://doi.org/10.1016/j.jhazmat.2008.05.015
Zhao, M.; Xu, Y.; Zhang, C.; Rong, H.; Zeng, G. New trends in removing heavy metals from wastewater. Applied Microbiology
and Biotechnology, v. 100, n. 15, p. 6509-6518, 2016.
Zielińska, M.; Galik, M. Use of Ceramic membranes in a membrane filtration supported by coagulation for the treatment
of dairy wastewater. Water, Air, & Soil Pollution, v. 228, p. 2-12, 2017. https://doi.org/10.1007/s11270-017-3365-x
ISSN 2359-1412