Revista Brasileira de Gestao Ambiental e Sustentabilidade (ISSN 2359-1412)
Bookmark this page

Home > Edições Anteriores > v. 5, n. 11 (2018) > Ferrazzo

 

Vol. 5, No 11, p. 833-847 - 31 dez. 2018

 

Métodos físicos e químicos para o tratamento de efluentes



Suéllen Tonatto Ferrazzo , Débora Ferasso , Marluci Marangoni , Mateus Velho dos Santos , Orlando de Paris Junior , Taís Carla Gaspareto , Gean Delise Leal Pasquali Vargas

Resumo
A busca por processos de tratamento de efluentes que sejam eficientes e garantam a segurança à saúde pública e ao meio ambiente tem sido um grande desafio nas últimas décadas, devido à presença de microrganismos persistentes e micropoluentes orgânicos e inorgânicos que resistem aos tratamentos convencionais. Assim, as tecnologias alternativas de tratamento de efluentes vêm sendo aplicadas em associação aos tratamentos primários e secundários, para alcançar maiores reduções da carga de poluentes, utilizando menor espaço físico e consumo de energia elétrica, bem como menor produção de lodo. Neste trabalho, buscou-se realizar um estudo da arte através de uma revisão dos métodos físicos e químicos para o tratamento de efluentes: membranas de filtração, eletrocoagulação, adsorção, troca iônica, processos oxidativos avançados, ozonização e precipitação química, considerando o princípio de funcionamento suas vantagens, desvantagens e aplicações de cada técnica.


Palavras-chave
Efluentes; Métodos físicos e químicos; Tecnologias alternativas.

Abstract
Physico-chemical methods for the treatment of effluents. The search for effluent treatment processes that are efficient and guarantee safety to public health and the environment has been a great challenge in the last decades due to the presence of persistent microorganisms and organic and inorganic micropollutants that resist conventional treatments. Thus, alternative technologies for effluent treatment have been applied in association with primary and secondary treatments, to achieve greater reductions in pollutant load, using less space and electrical energy consumption, as well as lower sludge production. In this work, a study of the art was made through a review of the physical-chemical methods for the treatment of effluents: filtration membranes, electrocoagulation, adsorption, ion exchange, advanced oxidative processes, ozonization and chemical precipitation, considering the principle of advantages, disadvantages and applications of each technique.


Keywords
Wastewater; Physical-chemical methods; Alternative technologies.

DOI
10.21438/rbgas.051103

Texto completo
PDF

References
Abdel-Raouf, N.; Al-Homaidan, A. A.; Ibraheem, I. B. M. Microalgae and wastewater treatment. , v. 19, n. 3, p. 257-275, 2012. https://doi.org/10.1016/j.sjbs.2012.04.005

Adewuyi, Y. G. Sonochemistry: Environmental science and engineering applications. Industrial & Engineering Chemistry Research, v. 40, n. 22, p. 4681-4715, 2001. https://doi.org/10.1021/ie010096l

Aguiar, A. O.; Andrade, L. H.; Ricci, B. C.; Pires, W. L.; Miranda, G. A.; Amaral, M. C. S. Gold acid mine drainage treatment by membrane separation processes: An evaluation of the main operational conditions. Separation and Purification Technology, v. 170, p. 360-369, 2016. https://doi.org/10.1016/j.seppur.2016.07.003

Aguiar, A.; Andrade, L.; Grossi, L.; Pires, W.; Amaral, M. Acid mine drainage treatment by nanofiltration: A study of membrane fouling, chemical cleaning, and membrane ageing. Separation and Purification Technology, v. 192, p. 185-195, 2018. https://doi.org/10.1016/j.seppur.2017.09.043

Al-Shannag, M.; Al-Qodah, Z.; Bani-Melhem, K.; Qtaishat, M. R.; Alkasrawi, M. Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance. Chemical Engineering Journal, v. 260, p. 749-756, 2015. https://doi.org/10.1016/j.cej.2014.09.035

Alvarez-Ayuso, A. E.; García-Sánchez, A.; Querol, X. Purification of metal electroplating wastewaters using zeolites. Water Research, v. 37, n. 20, p. 4855-4862, 2003. https://doi.org/10.1016/j.watres.2003.08.009

Alvarino, T.; Suarez, S.; Lema, J.; Omil, F. Understanding the sorption and biotransformation of organic micropollutants in innovative biological wastewater treatment technologies. Science of the Total Environment, v. 615, p. 297-306, 2018. https://doi.org/10.1016/j.scitotenv.2017.09.278

Amado-Piña, D. A.; Roa-Morales, G.; Barrera-Díaz, C.; Balderas-Hernandez, P.; Romero, R.; Campo, E. M.; Natividad, R. Synergic effect of ozonation and electrochemical methods on oxidation and toxicity reduction: Phenol degradation. Fuel, v. 198, p. 82-90, 2017. https://doi.org/10.1016/j.fuel.2016.10.117

Amaral, C. N. R.; Feiteira, F. N.; Cruz, R. C.; Cravo, V. O.; Cassella, R. J.; Pacheco, W. F. Removal of basic violet 3 dye from aqueous media using a steel industry residue as solid phase. Journal of Environmental Chemical Engineering, v. 4, p. 4148-4193, 2016. https://doi.org/10.1016/j.jece.2016.09.023

Andrade, L. H.; Aguiar, A. O.; Pires, W. L. Miranda, G. A.; Teixeira, L. P. T.; Almeida, G. C. C.; Amaral, M. C. S. Nanofiltration and reverse osmosis applied to gold mining effluent treatment and reuse. Brazilian Journal of Chemical Engineering, v. 34, n. 1, p. 93-107, 2017b. https://doi.org/10.1590/0104-6632.20170341s20150082

Andrade, L. H.; Ricci, B. C.; Grossi, L. B.; Pires, W. L.; Aguiar, A. O.; Amaral, M. C. S. Nanofiltration applied in gold mining effluent treatment: Evaluation of chemical cleaning and membrane stability.Chemical Engineering Journal, v. 323, p. 545-556, 2017a. https://doi.org/10.1016/j.cej.2017.04.116

Andrioli, E.; Mella, B.; Gutterres, M. A tecnologia de ozonização no tratamento de efluentes de curtume. Anais do II Congresso Brasileiro de Engenharia Química, Florianópolis, p. 1-8, 2014.

Araújo, K. S.; Antonelli, R.; Gaydeczka, B.; Granato, A. C.; Malpass, G. R. P. Processos oxidativos avançados: uma revisão de fundamentos e aplicações no tratamento de águas residuais urbanas e efluentes industriais. Revista Ambiente & Água, v. 11, n. 2, p. 387-401, 2016. https://doi.org/10.4136/ambi-agua.1862

Araújo, K. S.; Malpass, G. R. P.; Urias, P. M.; Cunha, P. C. R. Processos oxidativos avançados: fundamentos e aplicações no tratamento de águas residuais e efluentes industriais. Anais do V Congresso Brasileiro de Gestão Ambiental, Belo Horizonte, IBEAS, 2014.

Babaei, A. A.; Kakavandi, B.; Rafiee, M.; Kalantarhormizi, F.; Purkaram, I.; Ahmadi, E.; Esmaeili, S. Comparative treatment of textile wastewater by adsorption, Fenton, UV-Fenton, and US-Fenton using magnetic nanoparticles-functionalized carbon (MNPs@c). Journal of Industrial and Engineering Chemistry, v. 56, p. 163-174, 2017. https://doi.org/10.1016/j.jiec.2017.07.009

Babilas, D.; Dydo, P. Selective zinc recovery from electroplating wastewaters by electrodialysis enhanced with complex formation. Separation and Purification Technology, v. 192, p. 419-428, 2018. https://doi.org/10.1016/j.seppur.2017.10.013

Badruzzaman, M.; Oppenheimer, J.; Adham, S.; Kumar, M. Innovative beneficial reuse of reverse osmosis concentrate using bipolar membrane electrodialysis and electrochlorination processes. Journal of Membrane Science, v. 326, n. 2, p. 392-399, 2009. https://doi.org/10.1016/j.memsci.2008.10.018

Bassala, H. D.; Dedzo, G. K.; Bememba, C. B. N.; Seumo, P. M. T.; Dazie, J. D.; Nanseu-Njiki, C. P.; Ngameni, E. Investigation of the efficiency of a designed electrocoagulation reactor: Application for dairy effluent treatment. Process Safety and Environmental Protection, v. 111, p. 122-127, 2017. https://doi.org/10.1016/j.psep.2017.07.002

Bell, E. A.; Poynor, T. E.; Newhart, K. B.; Regnery, J.; Coday, B. D.; Cath, T. Y. Produced water treatment using forward osmosis membranes: Evaluation of extended-time performance and fouling. Journal of Membrane Science, v. 525, p. 77-88, 2017. https://doi.org/10.1016/j.memsci.2016.10.032

Ben, W.; Wang, J.; Cao, R.; Yang, M.; Zhang, Y. Qiang, Z. Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes. Chemosphere, v. 172, p. 392-398, 2017. https://doi.org/10.1016/j.chemosphere.2017.01.041

Benatti, C. T.; Tavares, C. R. G.; Lenzi, E. Sulfate removal from waste chemicals by precipitation. Journal of Environmental Management, v. 90, n. 9, p. 504-511, 2009. https://doi.org/10.1016/j.jenvman.2007.12.006

Bengani-Lutz, P.; Zaf, R. D.; Culfaz-Emecem, Z.; Asatekin, A. Extremely fouling resistant zwitterionic copolymer membranes with ~ 1 nm pore size for treating municipal, oily and textile wastewater streams. Journal of Membrane Science, v. 543, p. 184-194, 2017. https://doi.org/10.1016/j.memsci.2017.08.058

Bernardi, F.; Zadinelo, I. V.; Alves, H. J.; Meurer, F.; Santos, L. D. Chitins and chitosans for the removal of total ammonia of aquaculture effluents. Aquaculture, v. 483, p. 203-201, 2018. https://doi.org/10.1016/j.aquaculture.2017.10.027

Bortoluzzi, A. C.; Faitão, J. A.; Di Luccio, M.; Dallago, R. M.; Steffens, J.; Zabot, G. L.; Tres, M. V. Dairy wastewater treatment using integrated membrane systems. Journal of Environmental Chemical Engineering, v. 5, n. 5, p. 4819-4827, 2017. https://doi.org/10.1016/j.jece.2017.09.018

Brillas, E.; Sires, I.; Oturan, M. A. Electro-fenton process and related electrochemical technologies based on Fenton's reaction chemistry. Chemical Reviews, v. 109, v. 12, p. 6570-6631, 2009. https://doi.org/10.1021/cr900136g

Caetano, M.; Valderrama, C.; Farran, A.; Cortina, L. J. Phenol removal from aqueous solution by adsorption and ion exchange mechanisms onto polymeric resins. Journal of Colloid and Interface Science, v. 338, n. 2, p. 402-409, 2009. https://doi.org/10.1016/j.jcis.2009.06.062

Centenaro, G. S. N. M.; Facin, B. R.; Valério, A.; Souza, A. A. U.; Silva, A.; Oliveira, J. V.; Oliveira, D. Application of polyurethane foam chitosan-coated as a low-cost adsorbent in the effluent treatment. Journal of Water Process Engineering, v. 20, p. 201-206, 2017. https://doi.org/10.1016/j.jwpe.2017.11.008

Chakinala, A. G.; Gogate, P. R.; Burgess, A. E.; Bremner, D. H. Industrial wastewater treatment using hydrodynamic cavitation and heterogeneous advanced Fenton processing. Chemical Engineering Journal, v. 152, n. 2/3, p. 498-502, 2009. https://doi.org/10.1016/j.cej.2009.05.018

Chen, G. Electrochemical technologies in wastewater treatment. Separation and Purification Technology, v. 38, n. 1, p.11-41, 2004. https://doi.org/10.1016/j.seppur.2003.10.006

Chou, S.; Shi, L.; Wang, R.; Tang, C. Y.; Qiu, C.; Fane, A. G. Characteristics and potential applications of a novel forward osmosis hollow fiber membrane. Desalination, v. 261, n. 3, p. 365-372, 2010. https://doi.org/10.1016/j.desal.2010.06.027

Cingolani, D.; Eusebi, A. L.; Battistoni, P. Osmosis process for leachate treatment in industrial platform: Economic and performances evaluations to zero liquid discharge. Journal of Environmental Management, v. 203, part 2, p. 782-790, 2017. https://doi.org/10.1016/j.jenvman.2016.05.012

Combernoux, N.; Schrive, L.; Labed, V.; Wyart, Y.; Carretier, E.; Moulin, P. Treatment of radioactive liquid effluents by reverse osmosis membranes: From lab-scale to pilot-scale. Water Research, v. 123, p. 311-320, 2017. https://doi.org/10.1016/j.watres.2017.06.062

Daneshvar, N.; Oladegaragoze, A.; Djafarzadeh, N. D. Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters. Journal of Hazardous Materials, v. 129, n. 1/3, p. 116-122, 2006. https://doi.org/10.1016/j.jhazmat.2005.08.033

Delgado, L. F.; Charles, P.; Glucina, K.; Morlay, C. The removal of endocrine disrupting compounds and cyanobacterial toxins during drinking water preparation using activated carbon: A review. Science of The Total Environmental, v. 435-436, n. 1, p. 509-525, 2012. https://doi.org/10.1016/j.scitotenv.2012.07.046

Dou, W.; Zhou, Z.; Jiang, L.; Jiang, A.; Huang, R.; Tian, X.; Zhang, W.; Chen, D. Sulfate removal from wastewater using ettringite precipitation: Magnesium ion inhibition and process optimization. Journal of Environmental Management, v. 196, p. 518-526, 2017. https://doi.org/10.1016/j.jenvman.2017.03.054

Duong, P. H. H.; Chung, T.-S. Application of thin film composite membranes with forward osmosis technology for the separation of emulsified oil-water. Journal of Membrane Science, v. 452, p. 117-126, 2014. https://doi.org/10.1016/j.memsci.2013.10.030

Edokpayi, J. N.; Odiyo, J. O.; Durowoju, O. D. Impact of wastewater on surface water quality in developing countries: A case study of South Africa. In: Tutu, H. Water quality. London: Intech, 2017. p. 401-416.

El-Taliawy, H.; Ekblad, M.; Nilsson, F.; Hagman, M.; Paxeus, N.; Jönsson, K.; Cimbritz, M.; Jansen, J. L. C.; Bester, K. Ozonation efficiency in removing organic micro-pollutants from wastewater with respect to hydraulic loading rates and diferente wastewaters. Chemical Engineering Journal, v. 325, p. 310-321, 2017. https://doi.org/10.1016/j.cej.2017.05.019

Fernandes, A.; Pacheco, M. J.; Ciríaco, L.; Lopes, A. Review on the electrochemical processes for the treatment of sanitary landfill leachates: Present and future. Applied Catalysis B: Environmental, v. 176-177, p. 183-200, 2015. https://doi.org/10.1016/j.apcatb.2015.03.052

Fioreze, M.; Santos, E. P.; Schmachtenberg, N. Processos oxidativos avançados: fundamentos e aplicação ambiental. Revista Eletrônica em Gestão, Educação e Tecnologia Digital, v. 18, n. 1, p. 79-91, 2014. https://doi.org/10.5902/2236117010662

Fosso-Kankeu, E.; Mittal, H.; Waanders, F.; Ray, S. S. Thermodynamic properties and adsorption behavior of hydrogel nanocomposites for cadmium removal from mine effluents. Journal of Industrial and Engineering Chemistry, v. 48, p. 151-161, 2017. https://doi.org/10.1016/j.jiec.2016.12.033

Freire, R. S.; Kunz, A.; Durán, N. Some chemical and toxicological aspects about paper mill effluent treatment with ozone. Environmental Technology, v. 21, n. 6, p. 717-721, 2000. https://doi.org/10.1080/09593332108618088

Gao, W.; Fatehi, P. Fly ash based adsorbent for treating bleaching effluent of kraft pulping process. Separation and Purification Technology, v. 195, p. 60-69, 2018. https://doi.org/10.1016/j.seppur.2017.12.002

Gao, Y.; Fang, Z.; Liang, P.; Huang, X. Direct concentration of municipal sewage by forward osmosis and membrane fouling behavior. Bioresource Technology, v. 247, p. 730-735, 2018. https://doi.org/10.1016/j.biortech.2017.09.145

Garcia-Segura, S.; Ocon, J. D.; Chong, M. N. Electrochemical oxidation remediation of real wastewater effluents: A review. Process Safety and Environment Protection, v. 113, p. 48-67, 2017. https://doi.org/10.1016/j.psep.2017.09.014

Gomes, J.; Costa, R.; Quinta-Ferreira, R. M.; Martins, R. C. Application of ozonation for pharmaceuticals and personal care products removal from water. Science of The Total Environment, v. 586, p. 265-283, 2017. https://doi.org/10.1016/j.scitotenv.2017.01.216

Hemmati, F.; Norouzbeigi, R.; Sarbishedh, F.; Shayesteh, H. Malachite green removal using modified sphagnum peat moss as a low-cost biosorbent: Kinetic, equilibrium and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers, v. 58, p. 485-489, 2016. https://doi.org/10.1016/j.jtice.2015.07.004

Henze, M.; Harremoes, P.; Arvin, E.; Jansen, J. L. C. Wastewater treatment: Biological and chemical processes. 2 ed. New York: Springer, 1996.

Hernandez, R.; Zappi, M.; Colluci, F.; Jones, R. Comparing the performance of various advanced oxidation process for treatment of acetone contaminated water. Journal Hazardous Materials, v. 92, n. 1, p. 33-50, 2002. https://doi.org/10.1016/S0304-3894(01)00371-5

Hickenbottom, K. L.; Hancock, N. T.; Hutchings, N. R.; Appleton, E. W.; Baeudry, E. G.; Xu, P.; Cath, T. Y. Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations. Desalination, v. 312, p. 60-66, 2013. https://doi.org/10.1016/j.desal.2012.05.037

Hoigné, J.; Bader, H. The role of hydroxyl radical reactions in ozonation processes inaqueous solutions. Water Research, v. 10, n. 5, p. 377-386, 1976. https://doi.org/10.1016/0043-1354(76)90055-5

Holt, P. K.; Barton, G. W.; Wark, M.; Mitachell, C. A. A quantitative comparison between chemical dosing and electrocoagulation. Colloids and Surfaces A: Physicochemical Engineering Aspects, v. 211, n. 2/3, p. 233-248, 2002. https://doi.org/10.1016/S0927-7757(02)00285-6

Hudaib, B.; Gomes, V.; Shi, J.; Zhou, C.; Liu, Z. Poly (vinylidene fluoride)/polyaniline/ MWCNT nanocomposite ultrafiltration membrane for natural organic matter removal. Separation and Purification Technology, v. 190, p. 143-155, 2018. https://doi.org/10.1016/j.seppur.2017.08.026

Judd, S. J. The status of industrial and municipal effluent treatment with membrane bioreactor technology. Chemical Engineering Journal, v. 305, p. 37-45, 2016. https://doi.org/10.1016/j.cej.2015.08.141

Juholin, P.; Kääriäinen, M.-L.; Riihimäki, M.; Sliz, R.; Aguirre, J. L.; Pirilä, M.; Fabritius, T.; Cameron, D.; Keiski, R. L. Comparison of ALD coated nanofiltration membranes to unmodified commercial membranes in mine wastewater treatment. Separation and Purification Technology, v. 192, p. 69-77, 2018. https://doi.org/10.1016/j.seppur.2017.09.005

Jung, K.; Hwang, M.; Park, D.; Ahn, K. Combining fluidized metal-impregnated granular activated carbon in three-dimensional electrocoagulation system: Feasibility and optimization test of color and COD removal from real cotton textile wastewater. Separation and Purification Technology, v. 146, p. 154-167, 2015. https://doi.org/10.1016%2Fj.seppur.2015.03.043

Karanfil, T.; Kilduff, J. Role of granular activated carbon surface chemistry on the adsorption of organic compounds. Priority pollutants. Environmental Science Technology, v. 33, n. 18, p. 3217-3224, 1999. https://doi.org/10.1021/es981016g

Kartic, D. N.; Narayana, B. C. A.; Arivazhagan, M. Removal of high concentration of sulfate from pigment industry effluent by chemical precipitation using barium chloride: RSM and ANN modeling approach. Journal of Environmental Management, v. 206, p. 69-76, 2018. https://doi.org/10.1016/j.jenvman.2017.10.017

Kumar, P.; Sharma, N.; Ranjan, R.; Kumar, S.; Bhat, Z. F.; Jeong, D. K. Perspective of membrane technology in dairy industry: A review. Asian-Australasian Journal of Animal Sciences, v. 26, n. 9, p. 1347-1358, 2013. https://doi.org/10.5713/ajas.2013.13082

Li, N.; Whang, P.; Liu, Q.; Cao, H. Microwave enhanced chemical reduction process for nitrite-containing wastewater treatment using sulfaminic acid. Journal of Environmental Sciences, v. 22, n. 1, p. 56-51, 2010. https://doi.org/10.1016/S1001-0742(09)60074-7

Lin, J.; Ye, W.; Baltaru, M.; Tang, Y. P.; Bernstein, N. J.; Gao, P.; Balta, S.; Vlad, M.; Volodin, A.; Sotto, A.; Luis, P.; Zydney, A. L.; Bruggen, B. V. Tight ultrafiltration membranes for enhanced separation of dyes and Na2SO4 during textile wastewater treatment. Journal of Membrane Science, v. 514, p. 217-228, 2016. http://doi.org/10.1016/j.memsci.2017.02.005

Liu, G. C.; Yu, S. L.; Yang, H. J.; Hu, J.; Zhang, Y.; He, B.; Li, L.; Liu, Z. Y. Molecular mechanisms of ultrafiltration membrane fouling in polymer-flooding wastewater treatment: Role of ions in polymeric fouling. Environmental Science & Technology, v. 50, n. 3, p. 1393-1402, 2016. https://doi.org/10.1021/acs.est.5b04098

Luján-Facundo, M. J.; Soler-Cabezas, J. L. Mendoza-Roca, J. A.; Vicent-Vela, M. C.; Bes-Piá, A.; Doñate-Hernández, S. A study of the osmotic membrane bioreactor process using a sodium chloride solution and an industrial effluent as draw solutions. Chemical Engineering Journal, v. 322, p. 603-610, 2017. https://doi.org/10.1016/j.cej.2017.04.062

Luo, A.; Lior, N. Study of advancement to higher temperature membrane distillation. Desalination, v. 419, p. 88-100, 2017. https://doi.org/10.1016/j.desal.2017.05.020

Marcogliese, D. J.; Blaise, C.; Cyr, D.; Lafontaine, Y.; Fournier; M.; Gagné, F.; Gagnon, C.; Hudon, C. Effects of a major municipal effluent on the St. Lawrence River: A case study. AMBIO, v. 44, n. 4, p. 257-274, 2015. https://doi.org/10.1007/s13280-014-0577-9

Martins, P. J. M.; Reis, P. M.; Martins, R. C.; Guando-Ferreira, L. M.; Quinta-Ferreira, R. M. Iron recovery from the Fenton's treatment of winery effluent using an ion-exchange resin. Journal of Molecular Liquids, v. 242, p. 505-511, 2017. https://doi.org/10.1016/j.molliq.2017.07.041

Masten, S. J.; Davies, S. H. R. The use of ozonation to degrade organic contaminants in wastewaters. Environmental Science Technology, v. 28, n. 4, p. 180-185, 1994. https://doi.org/10.1021/es00053a718

Mohammad, A. W.; Teow, Y. H.; Ang, W. L.; Chung, Y. T.; Oatley-Radcliffe, D. L.; Hilal, N. Nanofiltration membranes review: Recent advances and future prospects. Desalination, v. 356, p. 226-254, 2015. https://doi.org/10.1016/j.desal.2014.10.043

Mollah, Y. M. A.; Schennach, R.; Parga, J. R.; Cocke, D. L. Electrocoagulation (EC): Science and applications. Journal of Hazardous Materials, v. 84, n. 1, p. 29-41, 2001. https://doi.org/10.1016/S0304-3894(01)00176-5

Noor, S. F. M.; Ahmad, N.; Khattak, M. A.; Khan, M. S.; Mukhtar, A.; Kazi, S.; Badshah, S.; Khan, R. Application of Sayong Ball Clay Membrane Filtration for Ni (II) removal from industrial wastewater. Journal of Taibah University for Science, v. 11, n. 6, p. 949-954, 2017. https://doi.org/10.1016/j.jtusci.2016.11.005

Oller, I.; Malato, S.; Sánchez-Pérez, J. A. Combination of advanced oxidation processes and biological treatments for wastewater decontamination: A review. Science of the Total Environment, v. 409, n. 20, p. 4141-4166, 2011. https://doi.org/10.1016/j.scitotenv.2010.08.061

Ortega, V. M. D.; Ochando-Pulido, J. M.; Martínez-Ferez, A. Ion exchange system for the final purification of olive mill wastewater: Performance of model vs. real effluent treatment. Process Safety and Environmental Protection, v. 103, p. 308-314, 2016. https://doi.org/10.1016/j.psep.2016.02.004

Pintar, A.; Batista, J.; Levec, J. Integrated ion exchange/catalytic process for efficient removal of nitrates from drinking water. Chemical Engineering Science, v. 56, n. 4, p. 1551-1559, 2001. https://doi.org/10.1016/S0009-2509(00)00382-1

Rafraf, I. D.; Lekunberri, I.; Sánchez-Melsió, A.; Aouni, M.; Borrego, C. M.; Balcázar, J. L. Abundance of antibiotic resistance genes in five municipal wastewater treatment plants in the Monastir Governorate, Tunisia. Environmental Pollution, v. 219, p. 353-358, 2016. https://doi.org/10.1016/j.envpol.2016.10.062

Rastgar, M.; Shakeri, A.; Bozorg, A.; Salehi, H.; Saadattalab, V. Impact of nanoparticles surface characteristics on pore structure and performance of forward osmosis membranes. Desalination, v. 421, p. 179-189, 2017. https://doi.org/10.1016/j.desal.2017.01.040

Ricci, B. C.; Ferreira, C. D.; Aguiar, A. O.; Amaral, M. C. S. Integration of nanofiltration and reverse osmosis for metal separation and sulfuric acid recovery from gold mining effluent. Separation and Purification Technology, v. 154, p. 11-21, 2015. https://doi.org/10.1016/j.seppur.2015.08.040

Samartino, J. A.; Khayet, M.; García-Payo, M. C. Reuse of discarded membrane distillation membranes in microfiltration technology. Journal of Membrane Science, v. 539, p. 273-283, 2017. https://doi.org/10.1016/j.memsci.2017.06.003

Silva, A. J.; Varesche, M. B.; Foresti, E.; Zaiat, M. Sulphate removal from industrial wastewater using a packed-bed anaerobic reactor. Process Biochemistry, v. 37, p. 927-935, 2002. https://doi.org/10.1016/S0032-9592(01)00297-7

Sivagami, K.; Sakthivel, K. P.; Nambi, I. M. Advanced oxidation processes for the treatment of tannery wastewater. Journal of Environmental Chemical Engineering, v. 6, p. 3656-3663, 2017. https://doi.org/ 10.1016/j.jece.2017.06.004

Snyder, S. A.; Adham, S.; Redding, A. M.; Cannon, F. S.; De Carolis, J.; Oppenheimer, J.; Wert, E. C.; Yoon, Y. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination, v. 202, n. 1/3, p. 156-181, 2007. https://doi.org/10.1016/j.desal.2005.12.052

Srinivasan, S. V.; Rema, T.; Chitra, K.; Balakameswari, K. S.; Suthanthararajan, B.; Maheswari, B. U. Decolourisation of leather dye by ozonation. Desalination, v. 235, n. 1/3, p. 88-92, 2009. https://doi.org/10.1016/j.desal.2007.07.032

Uslu, G.; Demirci, A.; Regan, J. M. Disinfection of synthetic and real municipal wastewater effluent by flow-through pulsed UV-light treatment system. Journal of Water Process Engineering, v. 10, p. 89-97, 2016. https://doi.org/10.1016/j.jwpe.2016.02.004

Valverde, L. J.; Lucas, A.; Carmona, M.; Pérez, J. P.; Gozález, M.; Rodríguez, J. F. Minimizing the environmental impact of the regeneration process of an ion exchange bed charged with transition metals. Separation and Purification Technology, v. 49, n. 2, p. 167-173, 2006. https://doi.org/10.1016/j.seppur.2005.09.009

Walker, S.; Narbaitz, R. M. Hollow fiber ultrafiltration of Ottawa River water: Floatation versus sedimentation pre-treatment. Chemical Engineering Journal, v. 288, p. 228-237, 2016. https://doi.org/10.1016/j.cej.2015.11.064

Wojtyniak, B.; Kołodziejczyk, J.; Szaniawska, D. Production of lactic acid by ultrafiltration of fermented whey obtained in bioreactor equipped with ZOSS membrane. Chemical Engineering Journal, v. 305, p. 28-36, 2016. https://doi.org/10.1016/j.cej.2016.01.048

Xie, L. P.; Fu, F. L.; Tang, B. Research progress in the treatment of complex heavy metal wastewater. Industrial Water Treatment, v. 32, p. 1-5, 2012. https://doi.org/10.1088/1755-1315/121/3/032022

Xie, M.; Price, W. E.; Nghiem, L. D. Rejection of pharmaceutically active compounds by forward osmosis: Role of solution pH and membrane orientation. Separation and Purification Technology, v. 93, p. 107-114, 2012. https://doi.org/10.1016/j.seppur.2012.03.030

Yang, T.; Qiao, B.; Li, G.-C.; Yang, Q.-Y. Improving performance of dynamic membrane assisted by electrocoagulation for treatment of oily wastewater: Effect of electrolytic conditions. Desalination, v. 363, p. 134-143, 2015. https://doi.org/10.1016/j.desal.2015.01.010

Yetilmezsoy, K.; Ilhan, F.; Sapci-Zengin, Z.; Sakar, S.; Gonullu, M. T. Decolorization and COD reduction of UASB pretreated poultry manure wastewater by electrocoagulation process: A post-treatment study. Journal of Hazardous Materials, v. 162, n. 1, p. 120-132, 2009. https://doi.org/10.1016/j.jhazmat.2008.05.015

Zhao, M.; Xu, Y.; Zhang, C.; Rong, H.; Zeng, G. New trends in removing heavy metals from wastewater. Applied Microbiology and Biotechnology, v. 100, n. 15, p. 6509-6518, 2016.

Zielińska, M.; Galik, M. Use of Ceramic membranes in a membrane filtration supported by coagulation for the treatment of dairy wastewater. Water, Air, & Soil Pollution, v. 228, p. 2-12, 2017. https://doi.org/10.1007/s11270-017-3365-x


 

ISSN 2359-1412