Revista Brasileira de Gestao Ambiental e Sustentabilidade (ISSN 2359-1412)
Bookmark this page

Home > Edições Anteriores > v. 5, n. 11 (2018) > Souza

 

Vol. 5, No 11, p. 805-821 - 31 dez. 2018

 

Model for the performance of photovoltaic systems



Chiemeka Onyema

Abstract
In this article, the future in photovoltaic energy productivity (PVE) is evaluated using climate variables simulated aerosol clearness index and solar irradiance, it is a model for the performance of photovoltaic systems. The analysis indicates that the aerosol emission reductions in the near future result in an increase in global warming with a significant response of the solar surface radiation and associated PVE productivity. Changes in radiation surface and productivity of solar PVE are related to overall reduction in aerosol effects on the circulation and large scale associated with cloud coverage pattern, rather than local atmospheric effects on optical properties. PVE evaluation is then discussed in the context of the current situation and the PV market highlighting the effects on productivity induced by industrial and public policies, while technological development are comparable to the effects related to the weather. The results presented encourage the improvement and further use of climate models in the assessment of future availability for renewable energy.


Keywords
Climate change; Emissions; Energy systems vulnerability; Impacts and risks; Renewable energy.

Resumo
Modelo para o desempenho de sistemas fotovoltaicos. Neste artigo, o futuro da produtividade de energia fotovoltaica (PVE) é avaliado usando variáveis climáticas, índice de nitidez de aerossol e irradiância solar, em um modelo para o desempenho de sistemas fotovoltaicos. A análise indica que as reduções de emissões de aerossóis no futuro próximo resultam em um aumento no aquecimento global com uma resposta significativa da radiação da superfície solar e da produtividade PVE associada. Mudanças na superfície de radiação e na produtividade do PVE solar estão relacionadas à redução geral dos efeitos de aerossóis na circulação e em grande escala associados ao padrão de cobertura de nuvens, ao invés de efeitos atmosféricos locais nas propriedades ópticas. A avaliação do PVE é então discutida no contexto da situação atual e do mercado de PV destacando os efeitos sobre a produtividade induzidos pelas políticas públicas e industriais, enquanto o desenvolvimento tecnológico é comparável aos efeitos relacionados ao clima. Os resultados apresentados incentivam a melhoria e o uso futuro de modelos climáticos na avaliação da disponibilidade futura de energia renovável.


Palavras-chave
Mudanças climáticas; Emissões; Vulnerabilidade dos sistemas energéticos; Impactos e riscos; Energia renovável.

DOI
10.21438/rbgas.051101

Texto completo
PDF

References
Abdul-Wahab, S. A.; Bakheit, C. S.; Al-Alawi, S. M. Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. , v. 20, no 10, p. 1263-1271, 2005. https://doi.org/10.1016/j.envsoft.2004.09.001

Albrecht, B. A. Aerosols, cloud microphysics, and fractional cloudiness. Science, v. 245, no. 4923, p. 1227-1230, 1989. https://doi.org/10.1126/science.245.4923.1227

Angströem, A. Atmospheric turbidity, global illumination and planetary albedo of the Earth. Tellus, v. 14, p. 435-450, 1962.

Artaxo, P.; Oliveira, P. H.; Lari, L. L.; Pauliquevis, T. M.; Rizzo, L. V.; Pires Junior, C.; Paixão, M. A.; Longo, K. M.; Freitas, S.; Correia, A. L. Efeitos climáticos de partículas de aerossóis biogênicos e emitidos em queimadas na Amazônia. Revista Brasileira de Meteorologia, v. 21, no. 3, p. 168-189, 2006. Available from: <http://www.rbmet.org.br/port/revista/revista_artigo.php?id_artigo=216>. Accessed on: Apr. 24, 2018.

Brasseur, G. P.; Prinn, R. G.; Pszenny, A. A. P. (Eds.). Atmospheric chemistry in a changing world: An integration and synthesis of a decade of tropospheric chemistry research. Berlin: Springer, 2003. p. 125-156. https://doi.org/10.1007/978-3-642-18984-5

Crook, J. A.; Jones, L. A.; Forstera, P. M.; Crook, R. Climate change impacts on future photovoltaic and concentrated solar power energy output. Energy and Environmental Science, v. 4, p. 3101-3109, 2011. https://doi.org/10.1039/C1EE01495A

Delucchi, M. A.; Jacobson, M. Z. Providing all global energy with wind, water, and solar power. Part II: Reliability, system and transmission costs, and policies. Energy Policy, v. 39, no. 3, p. 1170-1190, 2001. https://doi.org/10.1016/j.enpol.2010.11.045

Denholm, P.; Ela, E.; Kirby, B.; Milligan, M. Role of energy storage with renewable electricity generation. Golden, Colorado: National Renewable Energy Laboratory, 2010. (Report TP-6A2-47187). Availble from: <https://www.nrel.gov/docs/fy10osti/47187.pdf>. Access on: Apr. 23, 2018.

Denholm, P.; Hand M. Grid flexibility and storage required to achieve very high penetration of variable renewable electricity. Energy Policy, v. 39, no. 3, p. 1817-1830, 2011. https://doi.org/10.1016/j.enpol.2011.01.019

Dowling, P. The impact of climate change on the European energy system. Energy Policy, v. 60, p. 406-417, 2013. https://doi.org/10.1590/S1806-11172001000300004

El-Chaar, L.; Iamont, L. A.; El-Zein, N. Review of photovoltaic technologies. Renewable Sustainable Energy Review, v. 15, no. 5, p. 2165-2175, 2011. https://doi.org/10.1016/j.rser.2011.01.004

Feuermann, D.; Gordon, J. M. High-concentration photovoltaic designs based on miniature parabolic dishes. Solar Energy, v. 70, no. 5, p. 423-430, 2001. https://doi.org/10.1016/S0038-092X(00)00155-9

Hansen, J.; Sato, M.; Ruedy, R. Radiative forcing and climate response. Jounal of Geophysical Research, v. 102, no. D6, p. 6831-6864, 1997. https://doi.org/10.1029/96JD03436

Holben, B. N.; Eck, T. F.; Sluysker, I.; Tanré, D.; Buis, J. P.; Setzer, A.; Vermote, E.; Reagan, J. A.; Kaufman, Y. J.; Nakajima, T.; Lavenu, F.; Jankowiak, I.; Smirnov, A. AERONET: A federated instrument network and data arquive for aerosol characterization. Remote Sensing of Environment, v. 66, no. 1, p. 1 16, 1998. https://doi.org/10.1016/S0034-4257(98)00031-5

IPCC - Intergovernmental Panel on Climate Change. Special report on renewable energy sources and climate change mitigation: Summary for policymakers. Cambridge: Cambridge University Press, 2011.

Jacobson, M. Z.; Archer C. L. Saturation wind power potential and its implications for wind energy. PNAS, v. 109, p. 15679-15684, 2012. https://doi.org/10.1073/pnas.1208993109

Jacobson, M. Z.; Delucchi, M. A. Providing all global energy with wind, water, and solar power. Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy, v. 39, no. 3, p. 1154-1169, 2011. https://doi.org/10.1016/j.enpol.2010.11.040

Jordan, D. C.; Kurtz, S. R. Photovoltaic degradation rates: An analytical review. Progress in Photovoltaics, v. 21, no. 1, p. 12-29, 2013. https://doi.org/10.1002/pip.1182

Kloster, S.; Dentener, F.; Feichter J.; Raes, F.; Aardenne, J.; Roeckner, E.; Lohmann, U.; Stier, P.; Swart, R. Influence of future air pollution mitigation strategies on total aerosol radiative forcing. Atmospheric Chemistry and Physics, v. 8, p. 6405-6437, 2008. https://doi.org/10.5194/acp-8-6405-2008

Kloster, S.; Dentener, F.; Feichter, J.; Raes, F.; Lohmann, U.; Roeckner, E.; Fischer-Bruns, I. GCM study of future climate response to aerosol pollution Reductions. Climate Dynamics, v. 34, no. 7/8, p. 1177-1194, 2010. https://doi.org/10.1007/s00382-009-0573-0

Kudish, A. I.; Ianetz, A. Analysis of the solar radiation data for Beer Sheva, Israel, and its environs. Solar Energy, v. 48, no. 2, p. 97-10, 1992. https://doi.org/10.1016/0038-092X(92)90038-C

Latorre, M. R. D. O.; Cardoso, M. R. A. Análise de séries temporais em epidemiologia: uma introdução sobre aspectos metodológicos. Revista Brasileira de Epidemiologia, v. 4, no. 3, p. 145-152, 2001. https://doi.org/10.1590/S1415-790X2001000300002

Montgomery, D. C.; Peak, E. A. Introduction to linear regression analysis. 2. ed. New York: Wiley & Sons, 1992.

Montogomery, D. C.; Peck E. A.; Vining G. G. Introduction to linear regression analysis. 3. ed. New York: John Wiley & Sons, 2001.

Muzathik, A. M. Photovoltaic modules operating temperature estimation using a simple correlation. International Journal of Energy Engineering, v. 4, n. 4, p. 151-158, 2014.

Olsen, R. L.; Chappell, R. W.; Loftis, J. C. Water quality sample collection, data treatment and results presentation for principal components analysis: Literature review and Illinois River watershed case study. Water Research, v. 46, no. 9, p. 3110-3122, 2012. https://doi.org/10.1016/j.watres.2012.03.028

Parida, B.; Iniyan, S.; Goic, R. A review of solar photovoltaic technologies. Renewable Sustainable Energy Review, v. 15, p. 1625-1636, 2011. https://doi.org/10.1016/j.rser.2010.11.032

Pašičko, R.; Branković, Č; Šimić, Z. Assessment of climate change impacts on energy generation from renewable sources in Croatia. Renew Energy, v. 46, p. 224-231, 2012. https://doi.org/10.1016/j.renene.2012.03.029

Patt, A.; Pfenninger, S.; Lilliestam, J. Vulnerability of solar energy infrastructure and output to climate change. Climate Change, v. 121, no. 1, p. 93-102, 2013. https://doi.org/10.1007/s10584-013-0887-0

Pires, J.; Martins, F.; Sousa, S.; Alvim-Ferraz, M.; Pereira, M. Selection and validation of parameters in multiple linear and principal component regressions. Environmental Modelling & Software, v. 23, no. 1, p. 50-55, 2008. https://doi.org/10.1016/j.envsoft.2007.04.012

Raes, F.; Seinfeld, J. H. New directions: Climate change and air pollution abatement: A bumpy road. Atmospheric Environment, v. 43, no. 32, p. 5132-5133, 2009. https://doi.org/10.1016/j.atmosenv.2009.06.001

Razykov, T. M.; Ferekides, C. S.; Morel, D.; Stefanakos, E.; Ullal, H. S.; Upadhyaya, H. M. Solar photovoltaic electricity: Current status and future prospects. Solar Energy, v. 85, no. 8, p. 1580-1608, 2011. https://doi.org/10.1016/j.solener.2010.12.002

Ricieri, R. P. Modelos de estimativa e avaliação dos métodos de medida da radiação solar difusa. Botucatu: Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Ciências Agronômicas, 1998. (Thesis).

Roeckner, E.; Bengtsson, L.; Feichter, J.; Lelieveld, J.; Rodhe, H. Transient climate change simulations with a coupled atmosphere-ocean GCM including the tropospheric sulfur cycle. Journal of Climate, v. 12, p. 3004-3032, 1999. https://doi.org/10.1175/1520-0442(1999)012<3004:TCCSWA>2.0.CO;2

Ryu, K.; Rhee, J.-G.; Park, K.-M.; Kim, J. Concept and design of modular Fresnel lenses for concentration solar PV system. Solar Energy, v. 80, n. 12, p. 1580-1587, 2006. https://doi.org/10.1016/j.solener.2005.12.006

Schaeffer, R.; Szklo, A. S.; Lucena, A. F. P.; Borba, B. S. M. C.; L. Nogueira, P. P.; Fleming, F. P.; Troccoli, A.; Harrison, M.; Boulahya, M. S. Energy sector vulnerability to climate change: A review. Energy, v. 38, p. 1-12, 2012. https://doi.org/10.1016/j.energy.2011.11.056

Schafer, J. S.; Holben, B. N.; Eck, T. F.; Yamasoe, M. A.; Artaxo P. Atmospheric effects on insolation in the Brazilian Amazon: Observed modification of solar radiation by clouds and smoke and derived single scattering albedo of fire aerosols. Journal of Geophysical Research, v. 107.n. D20, p. LBA-41-1-LBA-41-15, 2002. https://doi.org/10.1029/2001JD000428

Si, F. T.; Isabella, O.; Zeman, M. Thin-film amorphous silicon germanium solar cells with p- and n-type hydrogenated silicon oxide layers. Solar Energy Materials and Solar Cells, v. 163, p. 9-14, 2017. https://doi.org/10.1016/j.solmat.2017.01.001

Skoczek, A.; Sample, T.; Dunlop, E. D. The results of performance measurements of field-aged crystalline silicon photovoltaic modules. Programs in Photovoltaics, v. 17, p. 227-240, 2009. https://doi.org/10.1002/pip.874

Skoplaki, E.; Palyvos, J. A. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar Energy, v. 83, p. 614-624, 2009. https://doi.org/10.1016/j.solener.2008.10.008

Souza, A.; Aristone F.; Sabbah I. Modeling the surface ozone concentration in Campo Grande (MS)-Brazil using Neural Networks. Natural Science, v. 7, no. 4, p. 171-178, 2015. https://doi.org/10.4236/ns.2015.74020

Souza, A.; Aristone, F. Estudo da eficiência energética de células fotovoltaicas em função da radiação solar no Centro-Oeste Brasileiro. Interespaço: Revista de Geografia e Interdisciplinaridade, v. 2, p. 115-128, 2017. https://doi.org/10.18764/2446-6549.v2n7p115-128

Souza, A.; Aristone, F. Um estudo da temperatura e da irradiação solar em células fotoeletricas. Tecno-Lógica, v. 22, p. 194-200, 2018. http://doi.org/10.17058/tecnolog.v22i2.11378

Souza, A.; Aristone, F.; Ferrari, L. F.; Reis, R. R. Modelling of the photovoltaic cell temperature according to the ambient temperature, wind speed and solar irradiance. Revista Brasileira de Energia, v. 5, p. 504-518, 2016.

Souza, A.; Pavão, H. G.; Oliveira, A. P. G. Modeling of ozone due to weather conditions. Revista Brasileira de Climatologia, v. 12, p. 8-21, 2013. http://doi.org/10.5380/Abclima.V12i1.29648

Trinuruk, P.; Sorapipatana, C.; Chenvidhya D. Estimating operating cell temperature of BIPV modules in Thailand. Renewable Energy, v. 34, n. 11, p. 2515-2523, 2009. https://doi.org/10.1016/j.renene.2009.02.027

Twomey, S. The influence of pollution on the shortwave albedo of clouds. Journal of Atmospheric Sciences, v. 34, p. 1149-1152, 1977. https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2

UNECA - United Nations. Economic Commission for Africa. Integrating renewable energy and climate change policies: Exploring policy options for Africa. UNECA African Climate Policy Centre, 2011. (Working paper, no. 10).

Vermote, E. F.; Vermeulen A. Atmospheric correction algorithm: Spectral reflectances (MOD09). NASA, 1999. (Algorithm theoretical background document). Available from: <https://eospso.nasa.gov/sites/default/files/atbd/atbd_mod08.pdf>. Acessed on: Apr. 25, 2018.

Wachsmuth, J.; Blohm, A.; Gößling-Reisemann, S.; Eickemeier, T.; Ruth, M.; Gasper, R.; Stührmann, S. How will renewable power generation be affected by climate change? The case of a Metropolitan Region in Northwest Germany. Energy, v. 58, n. 1, p. 192-201, 2013. https://doi.org/10.1016/j.energy.2013.06.035

Wu, Y.; Eames, P.; Mallick, T.; Sabry, M. Experimental characterization of a Fresnel lens photovoltaic concentrating system. Solar Energy, v. 86, p. 430-440, 2012. https://doi.org/10.1016/j.solener.2011.10.032

Yamasoe, M. A.; Artaxo, P.; Miguel, A. H.; Allen, A. G. Chemical composition of aerosol particles from direct emissions of biomass burning in the Amazon Basin: Water-soluble species and trace elements. Atmospheric Environment, v. 34, p. 1641-1653, 2000. https://doi.org/10.1016/S1352-2310(99)00329-5

Yamasoe, M. A.; Kaufman, Y. J.; Dubovik, O.; Remer, L. A.; Holben, B. N.; Artaxo, P. Retrieval of the real part of the refractive index of aerosols from sun/sky radiometers during SCAR-B. Journal of Geophysical Research, v. 103, no. D24, p. 31893-31902, 1998. https://doi.org/10.1029/98JD01211


 

ISSN 2359-1412