Vol. 5, No 11, p. 805-821 - 31 dez. 2018
Model for the performance of photovoltaic systems
Chiemeka Onyema
Abstract
In this article, the future in photovoltaic energy productivity (PVE) is evaluated using climate variables simulated aerosol clearness index and solar irradiance, it is a model for the performance of photovoltaic systems. The analysis indicates that the aerosol emission reductions in the near future result in an increase in global warming with a significant response of the solar surface radiation and associated PVE productivity. Changes in radiation surface and productivity of solar PVE are related to overall reduction in aerosol effects on the circulation and large scale associated with cloud coverage pattern, rather than local atmospheric effects on optical properties. PVE evaluation is then discussed in the context of the current situation and the PV market highlighting the effects on productivity induced by industrial and public policies, while technological development are comparable to the effects related to the weather. The results presented encourage the improvement and further use of climate models in the assessment of future availability for renewable energy.
Keywords
Climate change; Emissions; Energy systems vulnerability; Impacts and risks; Renewable energy.
Resumo
Modelo para o desempenho de sistemas fotovoltaicos. Neste artigo, o futuro da produtividade de
energia fotovoltaica (PVE) é avaliado usando variáveis climáticas, índice
de nitidez de aerossol e irradiância solar, em um modelo para o desempenho de sistemas fotovoltaicos.
A análise indica que as reduções de emissões de aerossóis no futuro
próximo resultam em um aumento no aquecimento global com uma resposta significativa da
radiação da superfície solar e da produtividade PVE associada. Mudanças na
superfície de radiação e na produtividade do PVE solar estão relacionadas
à redução geral dos efeitos de aerossóis na circulação e em grande
escala associados ao padrão de cobertura de nuvens, ao invés de efeitos atmosféricos
locais nas propriedades ópticas. A avaliação do PVE é então discutida no
contexto da situação atual e do mercado de PV destacando os efeitos sobre a produtividade
induzidos pelas políticas públicas e industriais, enquanto o desenvolvimento tecnológico
é comparável aos efeitos relacionados ao clima. Os resultados apresentados incentivam a melhoria
e o uso futuro de modelos climáticos na avaliação da disponibilidade futura de energia
renovável.
Palavras-chave
Mudanças climáticas; Emissões; Vulnerabilidade dos sistemas energéticos; Impactos
e riscos; Energia renovável.
DOI
10.21438/rbgas.051101
Texto completo
PDF
References
Abdul-Wahab, S. A.; Bakheit, C. S.; Al-Alawi, S. M. Principal component and multiple regression analysis in modelling
of ground-level ozone and factors affecting its concentrations.
Albrecht, B. A. Aerosols, cloud microphysics, and fractional cloudiness. Science, v. 245, no. 4923, p. 1227-1230,
1989. https://doi.org/10.1126/science.245.4923.1227
Angströem, A. Atmospheric turbidity, global illumination and planetary albedo of the Earth. Tellus, v. 14,
p. 435-450, 1962.
Artaxo, P.; Oliveira, P. H.; Lari, L. L.; Pauliquevis, T. M.; Rizzo, L. V.; Pires Junior, C.; Paixão, M. A.; Longo,
K. M.; Freitas, S.; Correia, A. L. Efeitos climáticos de partículas de aerossóis biogênicos e emitidos
em queimadas na Amazônia. Revista Brasileira de Meteorologia, v. 21, no. 3, p. 168-189, 2006. Available from:
<http://www.rbmet.org.br/port/revista/revista_artigo.php?id_artigo=216>.
Accessed on: Apr. 24, 2018.
Brasseur, G. P.; Prinn, R. G.; Pszenny, A. A. P. (Eds.). Atmospheric chemistry in a changing world: An integration
and synthesis of a decade of tropospheric chemistry research. Berlin: Springer, 2003. p. 125-156. https://doi.org/10.1007/978-3-642-18984-5
Crook, J. A.; Jones, L. A.; Forstera, P. M.; Crook, R. Climate change impacts on future photovoltaic and concentrated solar
power energy output. Energy and Environmental Science, v. 4, p. 3101-3109, 2011. https://doi.org/10.1039/C1EE01495A
Delucchi, M. A.; Jacobson, M. Z. Providing all global energy with wind, water, and solar power. Part II: Reliability, system
and transmission costs, and policies. Energy Policy, v. 39, no. 3, p. 1170-1190, 2001. https://doi.org/10.1016/j.enpol.2010.11.045
Denholm, P.; Ela, E.; Kirby, B.; Milligan, M. Role of energy storage with renewable electricity generation. Golden,
Colorado: National Renewable Energy Laboratory, 2010. (Report TP-6A2-47187). Availble from: <https://www.nrel.gov/docs/fy10osti/47187.pdf>.
Access on: Apr. 23, 2018.
Denholm, P.; Hand M. Grid flexibility and storage required to achieve very high penetration of variable renewable electricity.
Energy Policy, v. 39, no. 3, p. 1817-1830, 2011. https://doi.org/10.1016/j.enpol.2011.01.019
Dowling, P. The impact of climate change on the European energy system. Energy Policy, v. 60, p. 406-417, 2013.
https://doi.org/10.1590/S1806-11172001000300004
El-Chaar, L.; Iamont, L. A.; El-Zein, N. Review of photovoltaic technologies. Renewable Sustainable Energy Review,
v. 15, no. 5, p. 2165-2175, 2011. https://doi.org/10.1016/j.rser.2011.01.004
Feuermann, D.; Gordon, J. M. High-concentration photovoltaic designs based on miniature parabolic dishes. Solar Energy,
v. 70, no. 5, p. 423-430, 2001. https://doi.org/10.1016/S0038-092X(00)00155-9
Hansen, J.; Sato, M.; Ruedy, R. Radiative forcing and climate response. Jounal of Geophysical Research, v. 102, no. D6,
p. 6831-6864, 1997. https://doi.org/10.1029/96JD03436
Holben, B. N.; Eck, T. F.; Sluysker, I.; Tanré, D.; Buis, J. P.; Setzer, A.; Vermote, E.; Reagan, J. A.; Kaufman, Y. J.;
Nakajima, T.; Lavenu, F.; Jankowiak, I.; Smirnov, A. AERONET: A federated instrument network and data arquive for aerosol
characterization. Remote Sensing of Environment, v. 66, no. 1, p. 1 16, 1998. https://doi.org/10.1016/S0034-4257(98)00031-5
IPCC - Intergovernmental Panel on Climate Change. Special report on renewable energy sources and climate change
mitigation: Summary for policymakers. Cambridge: Cambridge University Press, 2011.
Jacobson, M. Z.; Archer C. L. Saturation wind power potential and its implications for wind energy. PNAS, v. 109,
p. 15679-15684, 2012. https://doi.org/10.1073/pnas.1208993109
Jacobson, M. Z.; Delucchi, M. A. Providing all global energy with wind, water, and solar power. Part I: Technologies,
energy resources, quantities and areas of infrastructure, and materials. Energy Policy, v. 39, no. 3, p. 1154-1169,
2011. https://doi.org/10.1016/j.enpol.2010.11.040
Jordan, D. C.; Kurtz, S. R. Photovoltaic degradation rates: An analytical review. Progress in Photovoltaics, v. 21,
no. 1, p. 12-29, 2013. https://doi.org/10.1002/pip.1182
Kloster, S.; Dentener, F.; Feichter J.; Raes, F.; Aardenne, J.; Roeckner, E.; Lohmann, U.; Stier, P.; Swart, R. Influence
of future air pollution mitigation strategies on total aerosol radiative forcing. Atmospheric Chemistry and Physics,
v. 8, p. 6405-6437, 2008. https://doi.org/10.5194/acp-8-6405-2008
Kloster, S.; Dentener, F.; Feichter, J.; Raes, F.; Lohmann, U.; Roeckner, E.; Fischer-Bruns, I. GCM study of future climate
response to aerosol pollution Reductions. Climate Dynamics, v. 34, no. 7/8, p. 1177-1194, 2010. https://doi.org/10.1007/s00382-009-0573-0
Kudish, A. I.; Ianetz, A. Analysis of the solar radiation data for Beer Sheva, Israel, and its environs. Solar Energy,
v. 48, no. 2, p. 97-10, 1992. https://doi.org/10.1016/0038-092X(92)90038-C
Latorre, M. R. D. O.; Cardoso, M. R. A. Análise de séries temporais em epidemiologia: uma introdução
sobre aspectos metodológicos. Revista Brasileira de Epidemiologia, v. 4, no. 3, p. 145-152, 2001. https://doi.org/10.1590/S1415-790X2001000300002
Montgomery, D. C.; Peak, E. A. Introduction to linear regression analysis. 2. ed. New York: Wiley & Sons, 1992.
Montogomery, D. C.; Peck E. A.; Vining G. G. Introduction to linear regression analysis. 3. ed. New York: John Wiley &
Sons, 2001.
Muzathik, A. M. Photovoltaic modules operating temperature estimation using a simple correlation. International Journal of
Energy Engineering, v. 4, n. 4, p. 151-158, 2014.
Olsen, R. L.; Chappell, R. W.; Loftis, J. C. Water quality sample collection, data treatment and results presentation for principal
components analysis: Literature review and Illinois River watershed case study. Water Research, v. 46, no. 9, p. 3110-3122,
2012. https://doi.org/10.1016/j.watres.2012.03.028
Parida, B.; Iniyan, S.; Goic, R. A review of solar photovoltaic technologies. Renewable Sustainable Energy Review, v. 15,
p. 1625-1636, 2011. https://doi.org/10.1016/j.rser.2010.11.032
Pašičko, R.; Branković, Č; Šimić, Z. Assessment of climate change impacts on energy generation
from renewable sources in Croatia. Renew Energy, v. 46, p. 224-231, 2012. https://doi.org/10.1016/j.renene.2012.03.029
Patt, A.; Pfenninger, S.; Lilliestam, J. Vulnerability of solar energy infrastructure and output to climate change. Climate
Change, v. 121, no. 1, p. 93-102, 2013. https://doi.org/10.1007/s10584-013-0887-0
Pires, J.; Martins, F.; Sousa, S.; Alvim-Ferraz, M.; Pereira, M. Selection and validation of parameters in multiple linear and
principal component regressions. Environmental Modelling & Software, v. 23, no. 1, p. 50-55, 2008. https://doi.org/10.1016/j.envsoft.2007.04.012
Raes, F.; Seinfeld, J. H. New directions: Climate change and air pollution abatement: A bumpy road. Atmospheric Environment,
v. 43, no. 32, p. 5132-5133, 2009. https://doi.org/10.1016/j.atmosenv.2009.06.001
Razykov, T. M.; Ferekides, C. S.; Morel, D.; Stefanakos, E.; Ullal, H. S.; Upadhyaya, H. M. Solar photovoltaic electricity: Current
status and future prospects. Solar Energy, v. 85, no. 8, p. 1580-1608, 2011. https://doi.org/10.1016/j.solener.2010.12.002
Ricieri, R. P. Modelos de estimativa e avaliação dos métodos de medida da radiação solar
difusa. Botucatu: Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Ciências
Agronômicas, 1998. (Thesis).
Roeckner, E.; Bengtsson, L.; Feichter, J.; Lelieveld, J.; Rodhe, H. Transient climate change simulations with a coupled
atmosphere-ocean GCM including the tropospheric sulfur cycle. Journal of Climate, v. 12, p. 3004-3032, 1999.
https://doi.org/10.1175/1520-0442(1999)012<3004:TCCSWA>2.0.CO;2
Ryu, K.; Rhee, J.-G.; Park, K.-M.; Kim, J. Concept and design of modular Fresnel lenses for concentration solar PV system.
Solar Energy, v. 80, n. 12, p. 1580-1587, 2006. https://doi.org/10.1016/j.solener.2005.12.006
Schaeffer, R.; Szklo, A. S.; Lucena, A. F. P.; Borba, B. S. M. C.; L. Nogueira, P. P.; Fleming, F. P.; Troccoli, A.; Harrison, M.;
Boulahya, M. S. Energy sector vulnerability to climate change: A review. Energy, v. 38, p. 1-12, 2012. https://doi.org/10.1016/j.energy.2011.11.056
Schafer, J. S.; Holben, B. N.; Eck, T. F.; Yamasoe, M. A.; Artaxo P. Atmospheric effects on insolation in the Brazilian Amazon:
Observed modification of solar radiation by clouds and smoke and derived single scattering albedo of fire aerosols. Journal
of Geophysical Research, v. 107.n. D20, p. LBA-41-1-LBA-41-15, 2002. https://doi.org/10.1029/2001JD000428
Si, F. T.; Isabella, O.; Zeman, M. Thin-film amorphous silicon germanium solar cells with p- and n-type hydrogenated silicon
oxide layers. Solar Energy Materials and Solar Cells, v. 163, p. 9-14, 2017. https://doi.org/10.1016/j.solmat.2017.01.001
Skoczek, A.; Sample, T.; Dunlop, E. D. The results of performance measurements of field-aged crystalline silicon photovoltaic
modules. Programs in Photovoltaics, v. 17, p. 227-240, 2009. https://doi.org/10.1002/pip.874
Skoplaki, E.; Palyvos, J. A. On the temperature dependence of photovoltaic module electrical performance: A review of
efficiency/power correlations. Solar Energy, v. 83, p. 614-624, 2009. https://doi.org/10.1016/j.solener.2008.10.008
Souza, A.; Aristone F.; Sabbah I. Modeling the surface ozone concentration in Campo Grande (MS)-Brazil using Neural Networks.
Natural Science, v. 7, no. 4, p. 171-178, 2015. https://doi.org/10.4236/ns.2015.74020
Souza, A.; Aristone, F. Estudo da eficiência energética de células fotovoltaicas em função
da radiação solar no Centro-Oeste Brasileiro. Interespaço: Revista de Geografia e Interdisciplinaridade,
v. 2, p. 115-128, 2017. https://doi.org/10.18764/2446-6549.v2n7p115-128
Souza, A.; Aristone, F. Um estudo da temperatura e da irradiação solar em células fotoeletricas.
Tecno-Lógica, v. 22, p. 194-200, 2018. http://doi.org/10.17058/tecnolog.v22i2.11378
Souza, A.; Aristone, F.; Ferrari, L. F.; Reis, R. R. Modelling of the photovoltaic cell temperature according to the ambient
temperature, wind speed and solar irradiance. Revista Brasileira de Energia, v. 5, p. 504-518, 2016.
Souza, A.; Pavão, H. G.; Oliveira, A. P. G. Modeling of ozone due to weather conditions. Revista Brasileira de
Climatologia, v. 12, p. 8-21, 2013. http://doi.org/10.5380/Abclima.V12i1.29648
Trinuruk, P.; Sorapipatana, C.; Chenvidhya D. Estimating operating cell temperature of BIPV modules in Thailand. Renewable
Energy, v. 34, n. 11, p. 2515-2523, 2009. https://doi.org/10.1016/j.renene.2009.02.027
Twomey, S. The influence of pollution on the shortwave albedo of clouds. Journal of Atmospheric Sciences, v. 34,
p. 1149-1152, 1977. https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
UNECA - United Nations. Economic Commission for Africa. Integrating renewable energy and climate change policies: Exploring
policy options for Africa. UNECA African Climate Policy Centre, 2011. (Working paper, no. 10).
Vermote, E. F.; Vermeulen A. Atmospheric correction algorithm: Spectral reflectances (MOD09). NASA, 1999. (Algorithm
theoretical background document). Available from: <https://eospso.nasa.gov/sites/default/files/atbd/atbd_mod08.pdf>.
Acessed on: Apr. 25, 2018.
Wachsmuth, J.; Blohm, A.; Gößling-Reisemann, S.; Eickemeier, T.; Ruth, M.; Gasper, R.; Stührmann, S. How will
renewable power generation be affected by climate change? The case of a Metropolitan Region in Northwest Germany. Energy,
v. 58, n. 1, p. 192-201, 2013. https://doi.org/10.1016/j.energy.2013.06.035
Wu, Y.; Eames, P.; Mallick, T.; Sabry, M. Experimental characterization of a Fresnel lens photovoltaic concentrating system.
Solar Energy, v. 86, p. 430-440, 2012. https://doi.org/10.1016/j.solener.2011.10.032
Yamasoe, M. A.; Artaxo, P.; Miguel, A. H.; Allen, A. G. Chemical composition of aerosol particles from direct emissions of
biomass burning in the Amazon Basin: Water-soluble species and trace elements. Atmospheric Environment, v. 34,
p. 1641-1653, 2000. https://doi.org/10.1016/S1352-2310(99)00329-5
Yamasoe, M. A.; Kaufman, Y. J.; Dubovik, O.; Remer, L. A.; Holben, B. N.; Artaxo, P. Retrieval of the real part of the refractive
index of aerosols from sun/sky radiometers during SCAR-B. Journal of Geophysical Research, v. 103, no. D24, p. 31893-31902,
1998. https://doi.org/10.1029/98JD01211
ISSN 2359-1412