Revista Brasileira de Gestao Ambiental e Sustentabilidade (ISSN 2359-1412)
Bookmark this page

Home > Edições Anteriores > v. 10, n. 26 (2023) > Melo

 

Vol. 10, No 26, p. 1257-1268 - 31 dez. 2023

 

Uso de macrófitas para recuperação de áreas úmidas urbanas degradadas: uma revisão



Pedro Soares de Melo , Cristina Moll Hüther , Anna Amandi Palma Diniz Baker , Gabriel Brazo Sabino da Silva e Junior Borella

Resumo
A fitorremediação, técnica que utiliza plantas capazes de bioacumular, filtrar e degradar metais e seus efeitos tóxicos que são nocivos ao meio ambiente, tem se mostrado eficaz para retirada desses poluentes do meio sem prejuízos, sendo então uma forma alternativa e ecológica para retiradas de poluentes despejados no meio aquático. Para isso, essa revisão buscou compilar informações sobre fitorremediação com plantas aquáticas e seu uso em áreas úmidas urbanas degradadas, como também apresentando as espécies com maior frequência de utilização para a restauração dessas áreas quando degradadas por metais pesados. Para tal, foram pesquisados artigos de pesquisa e de revisão publicados nas bases de dados SciELO, ACS Publications, MDPI e Hindawi, entre 2011 e 2022. Obteve-se como resultado 890 artigos abordando sobre a fitorremediaçãoem contexto amplo, mas com base no tema, focado em tratamento de águas residuais, apenas 102. Com base nesses artigos, os dois países que se destacam no tema de fitorremediação são China e Colômbia; sendo os dois poluentes mais encontrados em águas residuais são os metais pesados, como o chumbo e cobre. Para as características e tecnologias da fitorremediação, as maiores abordagens encontradas foram fitoextração, fitoestabilização, fitovolatização, fitodegradação, rizodegradação, fitodesalinização e as macrófitas que mais são citadas para uso nessas áreas são Eichhornia crassipes e Pistia stratiotes.


Palavras-chave
Fitorremediação; Águas residuais; Efluentes; Plantas aquáticas; Biotecnologia.

Abstract
Use of macrophytes to restore degraded urban wetlands: A review. Phytoremediation, a technique that uses plants capable of bioaccumulating, filtering, and degrading metals and their toxic effects that are harmful to the environment, has proven effective for removing these pollutants from the environment without damage, and is therefore an alternative and ecological way to remove pollutants discharged into the aquatic environment. To this end, this review sought to compile information on phytoremediation with aquatic plants and their use in degraded urban wetlands, as well as presenting the species most frequently used for the restoration of these areas when degraded by heavy metals. To this end, research and review articles published in SciELO, ACS Publications, MDPI and Hindawi databases, between 2011 and 2022 were searched. It was obtained as a result 890 articles addressing about phytoremediation in a broad context, but based on the theme, focused on wastewater treatment, only 102. Based on these articles, the two countries that stand out in the phytoremediation theme are China and Colombia; being the two most found pollutants in wastewater are heavy metals, such as lead and copper. For the characteristics and technologies of phytoremediation, the major approaches found were phytoextraction, phytostabilization, phytovolatization, phytodegradation, rhizodegradation, phytosalinization, and the most cited macrophytes for use in these areas are Eichhornia crassipes and Pistia stratiotes.


Keywords
Phytoremediation; Waste water; Effluents; Aquatic plants; Biotechnology.

DOI
10.21438/rbgas(2023)102613

Texto completo
PDF

Referências
Ali, H.; Khan, E.; Sajad, M. A. Phytoremediation of heavy metals: Concepts and applications. Chemosphere, v. 91, n. 7, p. 869-881, 2013. https://doi.org/10.1016/j.chemosphere.2013.01.075

Ansari, A. A.; Naeem, M.; Gill, S. S.; AlZuaibr, F. M. Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. The Egyptian Journal of Aquatic Research, v. 46, n. 4, p. 371-376, 2020. https://doi.org/10.1016/j.ejar.2020.03.002

Farid, M.; Irshad, M.; Fawad, M.; Ali, Z.; Eneji, A. E.; Aurangzeb, N.; Mohammad, A.; Ali, B. Effect of cyclic phytoremediation with different wetland plants on municipal wastewater. International Journal of Phytoremediation, v. 16, n. 6, p. 572-581, 2014. https://doi.org/10.1080/15226514.2013.798623

Kafle, A.; Timilsina, A.; Gautam, A.; Adhikari, K.; Bhattarai, A.; Aryal, N. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances, v. 8, 100203, 2022. https://doi.org/10.1016/j.envadv.2022.100203

Kumar, V.; Chopra, A. K. Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant. Environmental Technology, v. 39, n. 1, p. 12-23, 2018. https://doi.org/10.1080/09593330.2017.1293165

Materac, M.; Wyrwicka, A.; Sobiecka, E. Phytoremediation techniques in wastewater treatment. Environmental Biotechnology, v. 11, n. 1, p. 10-13, 2015. https://doi.org/10.14799/ebms249

Mishra, S.; Maiti, A. The efficiency of Eichhornia crassipes in the removal of organic and inorganic pollutants from wastewater: A review. Environmental Science and Pollution Research, v. 24, n. 9, p. 7921-7937, 2017. https://doi.org/10.1007/s11356-016-8357-7

Mustafa, H. M.; Hayder, G. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Engineering Journal, v. 12, n. 1, p. 355-365, 2021. https://doi.org/10.1016/j.asej.2020.05.009

Ng, Y. S.; Chan, D. J. C. Wastewater phytoremediation by Salvinia molesta. Journal of Water Process Engineering, v. 15, p. 107-115, 2017. https://doi.org/10.1016/j.jwpe.2016.08.006

Nizam, N. U. M.; Hanafiah, M. M.; Noor, I. M.; Karim, H. I. A. Efficiency of five selected aquatic plants in phytoremediation of aquaculture wastewater. Applied Sciences, v. 10, n. 8, 2712, 2020. https://doi.org/10.3390/app10082712

ONU - Organização das Nações Unidas. Os Objetivos de Desenvolvimento Sustentável no Brasil. 2015. Disponível em: <https://brasil.un.org/pt-br/sdgs>. Acesso em: 12 fev. 2023.

Polińska, W.; Kotowska, U.; Kiejza, D.; Joanna Karpińska, J. Insights into the use of phytoremediation processes for the removal of organic micropollutants from water and wastewater: A review. Water, v. 13, n. 15, 2065, 2021. https://doi.org/10.3390/w13152065

Pradana, R.; Hernández-Martín, J. A.; Martínez-Hernández, V.; Meffe, R.; Santiago-Martín, A.; Barbón, A. P.; Bustamante, I. Attenuation mechanisms and key parameters to enhance treatment performance in vegetation filters: A review. Journal of Environmental Management, v. 300, 113752, 2021. https://doi.org/10.1016/j.jenvman.2021.113752

Singh, D.; Tiwari, A.; Gupta, R. Phytoremediation of lead from wastewater using aquatic plants. Journal of Agricultural Technology, v. 8, n. 1, p. 1-11, 2012.

Sun, H.; Wang, Z.; Gao, P.; Liu, P. Selection of aquatic plants for phytoremediation of heavy metal in electroplate wastewater. Acta Physiologiae Plantarum, v. 35, n. 2, p. 355-364, 2013. https://doi.org/10.1007/s11738-012-1078-8


 

ISSN 2359-1412