Revista Brasileira de Gestao Ambiental e Sustentabilidade (ISSN 2359-1412)
Bookmark this page

Home > Edições Anteriores > v. 10, n. 25 (2023) > Barbosa

 

Vol. 10, No 25, p. 795-802 - 31 ago. 2023

 

Uso de pulso de nutriente no crescimento da biomassa de Gracilaria birdiae E. M. Plastino & E. C. Oliveira (Rhodophyta, Gracilariaceae)



Êmille Natane de Araújo Barbosa e George Emmanuel Cavalcanti de Miranda

Resumo
O cultivo de algas tem sido estimulado como uma alternativa ao extrativismo nos bancos naturais. O melhoramento das técnicas pode incrementar as taxas de crescimento e, consequentemente, melhorar a produtividade e colaborar com a sustentabilidade da atividade. O objetivo deste estudo foi determinar o efeito do pulso de nutrientes, com fertilizante agrícola, na produtividade de Gracilaria birdiae E. M. Plastino & E. C. Oliveira (Rhodophyta: Gracilariaceae) em condições de laboratório. Foram testados 13 tratamentos, sendo um controle e 12 resultante de combinações de quatro concentrações de um fertilizante agrícola (VitanTM) e três períodos de exposição. Após o período de exposição ao pulso de nutrientes, as algas foram cultivadas em água do mar esterilizada por quatro semanas. Foi analisado o efeito do pulso de nutrientes na taxa de crescimento. Na avaliação do efeito do pulso de nutrientes, observou-se um aumento progressivo dos valores da biomassa fresca e taxa de crescimento em todos os tratamentos, com exceção do T12, tratamento com maior concentração e período de exposição ao fertilizante. Embora a análise estatística não tenha evidenciado diferença significativa entre os resultados dos 13 tratamentos, é possível destacar o tratamento T2 (1,5 mL/L; 12 h) como tendo a maior média de aumento da biomassa fresca e taxa de crescimento.


Palavras-chave
Sustentabilidade; Cultivo de macroalgas; Pulso de nutrientes; Gracilaria birdiae.

Abstract
Use of nutrient pulse to increase Gracilaria birdiae E. M. Plastino & E. C. Oliveira biomass. Seaweed cultivation has been encouraged as an alternative to harvesting in natural beds. The improvement of techniques can increase growth rates and productivity, in addition to collaborating with the sustainability of the activity. The aim of this study was to determine the effect of fertilizer pulse, using agricultural fertilizer as a nutrient source on Gracilaria birdiae E. M. Plastino & E. C. Oliveira (Rhodophyta: Gracilariaceae) productivity under laboratory conditions. Thirteen treatments were tested, 12 resulting from combinations of four concentrations of an agricultural fertilizer (VitanTM) and three exposure periods to this product, plus a control treatment, without the fertilizer pulse. After the exposure period, the seaweed were maintained in sterilized seawater for four weeks. The effect of the fertilizer pulse on the growth rate was analyzed. A progressive increase in the values of fresh biomass and growth rate was observed in all treatments, except for T12, treatment with the highest concentration and period of exposure to fertilizer. Although the statistical analysis did not show a significant difference between the 13 treatment's results, it's possible to point the treatment T2 (1.5 mL/L; 12 h) as having the highest mean of the increase of fresh biomass and growth rate.


Keywords
Sustainability; Seaweed farming; Nutrient pulse; Gracilaria birdiae.

DOI
10.21438/rbgas(2023)102516

Texto completo
PDF

Referências
Armisen, R. World-wide use and importance of Gracilaria. Journal of Applied Phycology, v. 7, p. 231-243, 1995. https://doi.org/10.1007/BF00003998

Brinkhuis, B. H. Growth patterns and rates. In: Littler, M.; Littler D. (Eds.). Handbook of phycological methods: Ecological field methods - macroalgae. Cambridge: Cambridge University Press, 1986. p. 461-477.

DeBoer, J. A.; Guigli, H. J; Israel, T. L.; D'Elia, C. F. Nutritional studies of two red algae. I. Growth rate as a function of nitrogen source and concentration. Journal of Phycology, v. 14, p. 261-266, 1978. https://doi.org/10.1111/j.1529-8817.1978.tb00296.x

DeBoer, J. A. Nutrients. In: Lobban, C. S.; Whynne, M. J. (Eds.). The Biology of seaweeds. Oxford: Blackwell Scientific Publications, 1981. p. 356-391.

El Gamal, A. A. Biological importance of marine algae. Saudi Pharmaceutical Journal, v. 18, n. 1, p. 1-25, 2010. https://doi.org/10.1016/j.jsps.2009.12.001

FAO - Food and Agriculture Organization of the United Nations. The state of world fisheries and aquaculture 2020: Sustainability in action. Rome: FAO, 2020. https://doi.org/10.4060/ca9229en

Fernandes, F. O.; Oliveira, S. R.; Klein, V.; Carneiro, M. A. A.; Colepicolo, P.; Marinho-Soriano, E. Effect of fertilization pulses on the production of Gracilaria birdiae seedlings under laboratory and field conditions. Journal of Applied Phycology, v. 29, p. 695-705, 2017. https://doi.org/10.1007/s10811-016-0994-1

Harrison, P. J.; Hurd, C. L. Nutrient physiology of seaweeds: Application of concepts to aquaculture. Cahiers de Biologie Marine, v. 42, p. 71-82, 2001.

Hayashi, L.; Bulboa, C.; Kradolfer, P.; Soriano, G.; Robledo, D. Cultivation of red seaweeds: A Latin American perspective. Journal of Applied Phycology, v. 26, p. 719-727, 2014. https://doi.org/10.1007/s10811-013-0143-z

Lapointe, B. E. Strategies for pulsed nutrient supply to Gracilaria cultures in the Florida Keys: Interactions between concentration and frequency of nutrient pulses. Journal of Experimental Marine Biology and Ecology, v. 93, n. 3, p. 211-222, 1985. https://doi.org/10.1016/0022-0981(85)90240-0

Lee, W.-K.; Lim, Y.-Y.; Leow, A. T.-C.; Namasivayam, P.; Abdullah, J. O.; Ho, C.-L. Factors affecting yield and gelling properties of agar. Journal of Applied Phycology, v. 29, p. 1527-1540, 2017. https://doi.org/10.1007/s10811-016-1009-y

Lobban, C.; Harrison, P. Seaweed ecology and physiology. New York: Cambridge University Press, 1997.

Mansilla, A.; Palacios, M.; Navarro, N. P.; Avila, M. Growth and survival performance of the gametophyte of Gigartina skottsbergii (Rhodophyta, Gigartinales) under defined nutrient conditions in laboratory culture. Journal of Applied Phycology, v. 20, p. 889-896, 2008. https://doi.org/10.1007/s10811-007-9279-z

Mantri, V. A.; Shah, Y.; Thiruppathi, S. Feasibility of farming the agarose-yielding red alga Gracilaria dura using tube-net cultivation in the open sea along the Gujarat Coast of NW India. Applied Phycology, v. 1, n. 1, p. 12-19, 2020. https://doi.org/10.1080/26388081.2019.1648181

Marinho-Soriano, E.; Bourret, E. Polysaccharides from the red seaweed Gracilaria dura (Gracilariales, Rhodophyta). Bioresource Technology, v. 96, n. 3, p. 379-382, 2005. https://doi.org/10.1016/j.biortech.2004.04.012

Nagler, P. L.; Glenn, E. P.; Nelson, S. G.; Napolean, S. Effects of fertilization treatment and stocking density on the growth and production of the economic seaweed Gracilaria parvispora (Rhodophyta) in cage culture at Molokai, Hawaii. Aquaculture, v. 219, n. 1/4, p. 379-391, 2003. https://doi.org/10.1016/S0044-8486(02)00529-X

Navarro-Angulo, L.; Robledo, D. Effects of nitrogen source, N:P ratio and N-pulse concentration and frequency on the growth of Gracilaria cornea (Gracilariales, Rhodophyta) in culture. Hydrobiologia, v. 398, p. 315-320, 1999. https://doi.org/10.1023/A:1017099321188

Pickering, T. D.; Gordon, M. E.; Tong, L. J. Effect of nutrient pulse concentration and frequency on growth of Gracilaria chilensis plants and levels of epiphytic algae. Journal of Applied Phycology, v. 5, p. 525-533, 1993. https://doi.org/10.1007/BF02182511

Plastino, E. M.; Oliveira, E. C. Gracilaria birdiae (Gracilariales, Rhodophyta), a new species from the tropical South American Atlantic with a terete frond and deep spermatangial conceptacles. Phycologia, v. 41, n. 4, p. 389-396, 2002. https://doi.org/10.2216/i0031-8884-41-4-389.1

Porse, H.; Rudolph, B. The seaweed hydrocolloid industry: 2016 updates, requirements, and outlook. Journal of Applied Phycology, v. 29, p. 2187-2200, 2017. https://doi.org/10.1007/s10811-017-1144-0

Rebello, J.; Ohno, M.; Ukeda, H.; Sawamura, M. Agar quality of commercial agarophytes from different geographical origins: 1. Physical and rheological properties. Journal of Applied Phycology, v. 8, p. 517-521, 1996. https://doi.org/10.1007/BF02186330

Rebours, C.; Marinho-Soriano, E.; Zertuche-González, J. A.; Hayashi, L.; Vásquez, J. A.; Kradolfer, P.; Soriano, G.; Ugarte, R.; Abreu, M. H.; Bay-Larsen, I.; Hovelsrud, G.; Rødven, R.; Robledo, D. Seaweeds: An opportunity for wealth and sustainable livelihood for coastal communities. Journal of Applied Phycology, v. 26, p. 1939-1951, 2014. https://doi.org/10.1007/s10811-014-0304-8

Tanna, B.; Mishra, A. Nutraceutical potential of seaweed polysaccharides: Structure, bioactivity, safety, and toxicity. Comprehensive Reviews in Food Science and Food Safety, v. 18, n. 3, p. 817-831, 2019.


 

ISSN 2359-1412