Vol. 11, No 29, p. 1535-1541 - 31 dez. 2024
Reciclagem de resíduos de poliestireno expandido e suas aplicações: uma minirevisão
Lívia Barcelos de Oliveira


Resumo
O poliestireno expandido (EPS) é um polímero sintético, derivado do petróleo e não-biodegradável, que possui diversas aplicações, desde embalagens até a construção civil. Assim, seu consumo vem crescendo exponencialmente. Por isso, diversos pesquisadores têm se aplicado em estudar rotas para reciclagem desse material. Existem três tipos de reciclagem: a reciclagem mecânica, química e térmica. A primeira usa máquinas para reduzir o volume dos resíduos, fundi-los e moldá-los. Esta possui o menor custo, porém o produto é de baixa qualidade. A segunda envolve a redução dos resíduos do polímeroà monômeros. Esta técnica é muito eficiente e igualmente complexa. Na terceira, os resíduos são submetidos a um aquecimento controlado em alta temperatura para quebrar os hidrocarbonetos de cadeia longa. Não há uso de substâncias potencialmente tóxicas ao meio ambiente, mas requer grandes quantidades de energia.
Palavras-chave
Poliestireno expandido; Reciclagem; Aplicações.
Abstract
Recycling of expanded polystyrene waste and its applications: A mini-review. Expanded polystyrene (EPS) is a synthetic polymer derived from petroleum, non-biodegradable, and used in various applications ranging from packaging to construction. As a result, its consumption has been growing exponentially. Consequently, numerous researchers have been dedicated to studying routes for recycling this material. There are three types of recycling: mechanical recycling, chemical recycling, and thermal recycling. Mechanical recycling involves using machines to reduce the volume of waste, melt it, and mold it. This method has the lowest cost but produces low-quality products. Chemical recycling involves breaking down the polymer waste into monomers. This technique is highly efficient but equally complex. In thermal recycling, the waste is subjected to controlled high-temperature heating to break downlong-chain hydrocarbons. It does not involve the use of potentially toxic substances to the environment but requires large amounts of energy.
Keywords
Expanded polystyrene; Recycling; Applications.
DOI
10.21438/rbgas(2024)112931
Texto completo
Referências
Achilias, D.; Andriotis, L.; Koutsidis, I.; Louka, D.; Nianias, N.; Siafaka, P.; Tsagkalias, I. A.; Tsintzou, G. Recent advances in the chemical recycling of polymers (PP, PS, LDPE, HDPE, PVC, PC, Nylon, PMMA). In: Achilias, D. (Ed.). Material recycling: Trends and perspectives. Rijeka, Croatia: InTech, 2012. p. 3-64. https://doi.org/10.5772/33457
Chaukura, N.; Gwenzi, W.; Bunhu, T.; Ruziwa, D. T.; Pumure, I. Potential uses and value-added products derived from waste polystyrene in developing countries: A review. Resources, Conservation & Recycling, v. 107, p. 157-165, 2016. https://doi.org/10.1016/j.resconrec.2015.10.031
Hamidi, N.; Galloway, B. Reprocessing post-consumer expanded polystyrene: Mechanical and thermal properties of lightweight concrete made with postconsumer expanded polystyrene. Journal of Macromolecular Science, Part B, v. 21, n. 6, p. 811-824, 2022. https://doi.org/10.1080/00222348.2022.2113305
Hossain, U.; Poon, C. S.; Lo, I. M. C.; Cheng, J. C. P. Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA. Resources, Conservation & Recycling, v. 109, p. 67-77, 2016. https://doi.org/10.1016/j.resconrec.2016.02.009
Moya D.; Aldás, C.; López, G.; Kaparaju, P. Municipal solid waste as a valuable renewable energy resource: A worldwide opportunity of energy recovery by using Waste-To-Energy Technologies. Energy Procedia, v. 134, p. 286-295, 2017. https://doi.org/10.1016/j.egypro.2017.09.618
Osemeahon, S. A.; Barminas, J. T.; Jang, A. L. Development of waste polystyrene as a binder for emulsion paint formulation I: Effect of polystyrene concentration. The International Journal of Engineering and Science, v. 2, n. 8, p. 30-35, 2013.
Prathiba, R.; Shruthi, M.; Miranda, L. R. Pyrolysis of polystyrene waste in the presence of activated carbon in conventional and microwave heating using modified thermocouple. Waste Management, v. 76, p. 528-536, 2018. https://doi.org/10.1016/j.wasman.2018.03.029
Premalatha, N.; Prathiba, R.; Miranda, M. A.; Miranda, L. R. Pyrolysis of polypropylene waste using sulfonated carbon catalyst synthesized from sugarcane bagasse. Journal of Material Cycles and Waste Management, v. 23, p. 1002-1014, 2021. https://doi.org/10.1007/s10163-021-01188-6
Qureshi, M. S.; Oasmaa, A.; Pihkola, H.; Deviatkin, I.; Tenhunen, A.; Mannila, J.; Minkkinen, H.; Pohjakallio, M.; Laine-Ylijoki, J. Pyrolysis of plastic waste: Opportunities and challenges. Journal of Analytical and Applied Pyrolysis, v. 152, 104804, 2020. https://doi.org/10.1016/j.jaap.2020.104804
Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Management, v. 69, p. 24-58, 2017. https://doi.org/10.1016/j.wasman.2017.07.044
Rahimi, A. R.; García, J. M. Chemical recycling of waste plastics for new materials production. Nature Reviews, v. 1, Article number: 0046, 2017. https://doi.org/10.1038/s41570-017-0046
Rajak, A.; Hapidin, D. A.; Iskandar, F.; Munir, M. M.; Khairurrijal, K. Controlled morphology of electrospun nanofibers from waste expanded polystyrene for aerosol filtration. Nanotechnology, v. 30, 425602, 2019. https://doi.org/10.1088/1361-6528/ab2e3b
Schyns, Z. O. G.; Shaver, M. P. Mechanical recycling of packaging plastics: A review. Macromolecular Rapid Communications, v. 42, 2000415, 2021. https://doi.org/10.1002/marc.202000415
Shih, S.-F.; Lin, M.-C.; Lin, L.-F. Coastal city environmental protection and governance: Reviewing residents’ recycling of renewable resources for waste management in China. Proceding of the 2021 5th International Conference on Advances in Energy, Environment and Chemical Science, E3S Web of Conferences, v. 245, 02023, 2021. https://doi.org/10.1051/e3sconf/202124502023
Suriapparao, D. V.; Nagababu, G.; Yerrayya, A.; Sridevi, V. Optimization of microwave power and graphite susceptor quantity for waste polypropylene microwave pyrolysis. Process Safety and Environmental Protection, v. 149, p. 234-243, 2021. https://doi.org/10.1016/j.psep.2020.10.055
UNEP - United Nations Environment Programme. Plastic pollution. 2024. Disponível em: <https://www.unep.org/plastic-pollution>. Acesso em: 23 jun. 2024.
Worrell, E.; Reuter, M. Handbook of recycling: State-of-the-art for practitioners, analysts, and scientists. Amsterdam: Elsevier, 2014. https://doi.org/10.1016/C2011-0-07046-1
Zancanaro, D. A.; Poletto, M. Effect of using activated carbon and graphene oxide on the microwave assisted pyrolysis of expanded polystyrene waste. Research, Society and Development, v. 11, e212111637920, 2022. https://doi.org/10.33448/rsd-v11i16.37920
ISSN 2359-1412