Revista Brasileira de Gestao Ambiental e Sustentabilidade (ISSN 2359-1412)
Bookmark this page

Home > Edições Anteriores > v. 11, n. 29 (2024) > Silva

 

Vol. 11, No 29, p. 1191-1204 - 31 dez. 2024

 

Panorama atual e perspectivas futuras do uso da biomassa da macaúba Acrocomia aculeata (Jack.) Lood. ex Mart. (Arecaceae): uma revisão sistemática da literatura



Emerson Fonseca Silva , Hygor Aristides Victor Rossoni , Philipe Werner Sepúlveda e Juliana Cristina Tristão

Resumo
A macaúba Acrocomia aculeata (Jack.) Lood. ex Mart. (Arecaceae) é uma palmeira oleaginosa amplamente distribuída pelo território brasileiro. Recentemente muita atenção tem sido dada a esta espécie, em função do alto teor de óleo proveniente de seu fruto, utilizado na produção de biodiesel e outros combustíveis derivados. No processamento de seu fruto há iminente geração de resíduos, que pode causar inúmeros passivos ambientais. Este trabalho busca, através de uma revisão sistemática da literatura, utilizando a metodologia de PRISMA, entender quais produtos tem sido gerado a partir dos resíduos da palmeira (casca, polpa, amêndoa, endocarpo e folhas) na atualidade. Para isso, foram utilizadas as bases de dados e portais acadêmicos Google Scholar, Periódicos CAPES e Scopus. Foram selecionados, a partir de uma série de critérios, 33 artigos para leitura total do texto e avaliação da elegibilidade, dos quais 14 foram selecionados para compor a revisão. Observou-se que a maior parte dos trabalhos busca produzir biocombustíveis e carvão ativado a partir de diferentes processos e técnicas. Ademais, este trabalho aponta algumas perspectivas e oportunidades futuras de pesquisa científica com os resíduos gerados a partir do processo de beneficiamento da macaúba, visando a obter produtos com alto valor agregado, mitigando possíveis impactos e otimizando a cadeia produtiva da espécie.


Palavras-chave
Resíduos; Biomassa; Acrocomia aculeata; Coprodutos.

Abstract
Current overview and future perspectives for the use of biomass from macauba palm Acrocomia aculeata (Jack.) Lood. ex Mart. (Arecaceae): A systematic review of the literature. The macauba Acrocomia aculeata (Jack.) Lood. ex Mart. (Arecaceae) is an oily palm tree widely distributed throughout Brazil. Recently, much attention has been given to this species due to the high oil content of its fruit, which is used in the production of biodiesel and other derived fuels. The processing of its fruit generates imminent waste, which can lead to numerous environmental liabilities. This study aims, through a systematic literature review using the adapted PRISMA methodology, to understand what scientific products have been generated from the macauba palm residues (shell, pulp, nut, endocarp, and leaves) in recent years. Databases and academic portals used include Google Scholar, CAPES Journals, and Scopus. Were selected, from a series of criteria, 33 papers for full-text reading and eligibility assessment, from which 14 articles were chosen for this review. It was observed that most of the studies focus on producing biofuels and activated carbons from various processes and techniques. Furthermore, this work outlines some perspectives and future research opportunities with the residues generated from macauba processing, aiming to obtain final products with high added value, mitigate potential impacts, and optimize the production chain of the species.


Keywords
Waste; Biomass; Acrocomia aculeata; Co-products.

DOI
10.21438/rbgas(2024)112909


Texto completo

 Baixar este arquivo PDF

 


Referências
Abafe, O. A.; Lawal, M. A.; Chokwe, T. B. Non-targeted screening of emerging contaminants in South African surface and wastewater. Emerging Contaminants, v. 9, n. 4, 100246, 2023. https://doi.org/10.1016/j.emcon.2023.100246

Aguieiras, E. C. G.; Cavalcanti-Oliveira, E. D.; Castro, A. M.; Langone, M. A. P.; Freire, D. M. G. Biodiesel production from Acrocomia aculeata acid oil by (enzyme/enzyme) hydroesterification process: use of vegetable lipase and fermented solid as low-cost biocatalysts. Fuel, v. 135, p. 315-321, 2014. https://doi.org/10.1016/j.fuel.2014.06.069

Altino, H. O. N.; Costa, B. E. S.; Cunha, R. N. Biosorption optimization of Ni (II) ions on macauba (Acrocomia aculeata) oil extraction residue using fixed-bed column. Journal of Environmental Chemical Engineering, v. 5, n. 5, p. 4895-4905, 2017. https://doi.org/10.1016/j.jece.2017.09.025

Andrade, A. C.; Marinho, J. F. U.; Souza, A. C.; Tavares, T. S.; Dias, D. R.; Schwan, R. F.; Nunes, C. A.; Bastos, S. C. Prebiotic potential of pulp and kernel cake from jeriva (Syagrus romanzoffiana) and macauba palm fruits (Acrocomia aculeata). Food Research International, v. 136, 109595, 2020. https://doi.org/10.1016/j.foodres.2020.109595

Ciconini, G.; Favaro, S. P.; Roscoe, R.; Miranda, C. H. B.; Tapeti, C. F.; Miyahira, M. A. M.; Bearari, L.; Galvani, F.; Borsato, A. V.; Colnago, L. A.; Naka, M. H. Biometry and oil contents of Acrocomia aculeata fruits from the Cerrados and Pantanal biomes in Mato Grosso do Sul, Brazil. Industrial Crops and Products, v. 45, p. 208-214, 2013. https://doi.org/10.1016/j.indcrop.2012.12.008

Coimbra, M. C.; Jorge, N. Proximate composition of guariroba (Syagrus oleracea), jeriva (Syagrus romanzoffiana) and macauba (Acrocomia aculeata) palm fruits. Food Research International, v. 44, n. 7, p. 2139-2142, 2011. https://doi.org/10.1016/j.foodres.2011.03.032

Colombo, C. A.; Berton, L. H. C.; Diaz, B. G.; Ferrari, R. A. Macauba: A promising tropical palm for the production of vegetable oil. OCL, v. 25, n. 1, D108, 2018. https://doi.org/10.1051/ocl/2017038

Corrêa, A. C.; Carmona, V. B.; Simão, J. A.; Galvani, F.; Marconcini, J. M.; Mattoso, L. H. C. Cellulose nanocrystals from fibers of macauba (Acrocomia aculeata) and gravata (Bromelia balansae) from Brazilian pantanal. Polymers, v. 11, n. 11, 1785, 2019. https://doi.org/10.3390/polym11111785

Costa, S. E. L.; Santos, R. C.; Castro, R. V. O.; Castro, A. F. N. M.; Magalhães, M. A.; Carneiro, A. C. O.; Santos, C. P. S.; Gomes, I. R. F.; Rochas, S. M. G. Briquettes quality produced with the macauba epicarp (Acrocomia aculeata) and Pinus sp. wood. Revista Árvore, v. 43, n. 5, e430501, 2019. https://doi.org/10.1590/1806-90882019000500001

Díaz, B. G.; Zucchi, M. I.; Alves-Pereira, A.; Almeida, C. P.; Moraes, A. C. L.; Vianna, S. A.; Azevedo-Filho, J.; Colombo, C. A. Genome-wide SNP analysis to assess the genetic population structure and diversity of Acrocomia species. PLoS ONE, v. 16, n. 7, e0241025, 2021. https://doi.org/10.1371/journal.pone.0241025

Evaristo, A. B.; Martino, D. C.; Ferrarez, A. H.; Donato, D. B.; Carneiro, A. C. O.; Grossi, J. A. S. Potencial energético dos resíduos de macaúba e sua utilização na produção de carvão vegetal. Ciência Florestal, v. 26, n. 2, p. 571-577, 2016. https://doi.org/10.5902/1980509822757

Francisconi, A. F.; Marroquín, J. A. M.; Cauz-Santos, L. A.; Van Den Berg, C.; Martins, K. K. M.; Costa, M. F.; Picanço-Rodrigues, D.; Alencar, L. D.; Zanello, C. A.; Colombo, C. A.; Hernández, B. G. D.; Amaral, D. T.; Lopes, M. T. G.; Veasey, E. A.; Zucchi, M. I. Complete chloroplast genomes of six neotropical palm species, structural comparison, and evolutionary dynamic patterns. Scientific Reports, v. 13, n. 1, 20635, 2023. https://doi.org/10.1038/s41598-023-44631-4

Giraldo-Bareño, Y. Y.; Pinzón-García, A. D.; Sousa, D. V. M.; Bomfim Filho, L. F. O.; Lopes, D. H. A.; Cortés, N. S.; Morávia, M. C. S. A.; Sinisterra, R. D.; Orlando, R. M. Efficient and easily scaled-up biosorbent based on natural and chemically modified macauba (Acrocomia aculeata) to remove Al3+, Mn2+ and Fe3+ from surface water contaminated with iron mining tailings. Talanta, v. 256, 124273, 2023. https://doi.org/10.1016/j.talanta.2023.124273

Guilhen, S. N.; Mašek, O.; Ortiz, N.; Izidoro, J. C.; Fungaro, D. A. Pyrolytic temperature evaluation of macauba biochar for uranium adsorption from aqueous solutions. Biomass and Bioenergy, v. 122, p. 381-390, 2019. https://doi.org/10.1016/j.biombioe.2019.01.008

Guilhen, S. N.; Rovani, S.; Araujo, L. G.; Tenório, J. A. S.; Mašek, O. Uranium removal from aqueous solution using macauba endocarp-derived biochar: Effect of physical activation. Environmental Pollution, v. 272, 116022, 2021. https://doi.org/10.1016/j.envpol.2020.116022

Hollas, C. E.; Bolsan, A. C.; Venturin, B.; Bonassa, G.; Tápparo, D. C.; Cândido, D.; Antes, F. G.; Vanotti, M. B.; Szögi, A. A.; Kunz, A. A second-generation phosphorus: Recovery from wastes towards the sustainability of production chains. Sustainability, v. 13, n. 11, 5919, 2021. https://doi.org/10.3390/su13115919

Ibitoye, S. E.; Jen, T.-C.; Mahamood, R. M.; Akinlabi, E. T. Densification of agro-residues for sustainable energy generation: An overview. Bioresources and Bioprocessing, v. 8, n. 1, Article number 75, 2021. https://doi.org/10.1186/s40643-021-00427-w

Lacerda, V. S.; López-Sotelo, J. B.; Correa-Guimarães, A.; Hernández-Navarro, S.; Sánchez-Báscones, M.; Navas-Gracia, L. M.; Martín-Ramos, P.; Martín-Gil, J. Rhodamine B removal with activated carbons obtained from lignocellulosic waste. Journal of Environmental Management, v. 155, p. 67-76, 2015. https://doi.org/10.1016/j.jenvman.2015.03.007

Laufer, M. O que fazer com a literatura cinza? Interciencia, v. 32, p. 7, 2007. Disponível em: <http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-18442007000100003&lng=es&nrm=iso>. Acesso em: 23 abr. 2024.

Lorenzi, H.; Souza, H. M.; Costa, J. T. M.; Cerqueira, L. S. C.; Ferreira, E. Palmeiras brasileiras e exóticas cultivadas. Nova Odessa: Plantarum, 2004.

Ma, H.; Guo, Y.; Qin, Y.; Li, Y.-Y. Nutrient recovery technologies integrated with energy recovery by waste biomass anaerobic digestion. Bioresource Technology, v. 269, p. 520-531, 2018. https://doi.org/10.1016/j.biortech.2018.08.114

Machado, W.; Figueiredo, A.; Guimarães, M. F. Initial development of seedlings of macauba palm (Acrocomia aculeata). Industrial Crops and Products, v. 87, p. 14-19, 2016. https://doi.org/10.1016/j.indcrop.2016.04.022

Michelin, S.; Penha, F. M.; Sychoski, M. M.; Scherer, R. P.; Treichel, H.; Valério, A.; Di Luccio, M.; Oliveira, D.; Oliveira, J. V. Kinetics of ultrasound-assisted enzymatic biodiesel production from macauba coconut oil. Renewable Energy, v. 76, p. 388-393, 2015. https://doi.org/10.1016/j.renene.2014.11.067

Ouyang, B.; Xu, W.; Zhang, W.; Guang, C.; Mu, W. An overview of different strategies involved in an efficient control of emerging contaminants: Promising enzymes and the related reaction process. Journal of Environmental Chemical Engineering, v. 10, n. 5, 108211, 2022. https://doi.org/10.1016/j.jece.2022.108211

Pérez, A. T. E.; Camargo, M.; Rincón, P. C. N.; Marchant, M. A. Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis. Renewable and Sustainable Energy Reviews, v. 69, p. 350-359, 2017. https://doi.org/10.1016/j.rser.2016.11.084

Pires, P. C. L.; César, A. S.; Cardoso, A. N.; Favaro, S. P.; Conejero, M. A. Strategies to improve the competitiveness of an agroindustrial system for a macauba based oil production in Minas Gerais State, Brazil. Land Use Policy, v. 126, 106552, 2023. https://doi.org/10.1016/j.landusepol.2023.106552

Plath, M.; Moser, C.; Bailis, R.; Brandt, P.; Hirsch, H.; Klein, A.-M.; Walmsley, D.; Von Wehrden, H. A novel bioenergy feedstock in Latin America? Cultivation potential of Acrocomia aculeata under current and future climate conditions. Biomass and Bioenergy, v. 91, p. 186-195, 2016. https://doi.org/10.1016/j.biombioe.2016.04.009

Rios, R. D. F.; Bueno, P. J. B.; Terra, J. C. S.; Moura, F. C. C. Influence of the surface modification of granular-activated carbon synthesized from macauba on heavy metal sorption. Environmental Science and Pollution Research, v. 30, n. 11, p. 31881-31894, 2023. https://doi.org/10.1007/s11356-022-23736-9

Silva, L. N.; Cardoso, C. C.; Pasa, V. M. D. Production of cold-flow quality biodiesel from high-acidity on-edible oils: Esterification and transesterification of macauba (Acrocomia aculeata) oil using various alcohols. BioEnergy Research, v. 9, p. 864-873, 2016. https://doi.org/10.1007/s12155-016-9740-4

Souza, G. K.; Scheufele, F. B.; Pasa, T. L. B.; Arroyo, P. A.; Pereira, N. C. Synthesis of ethyl esters from crude macauba oil (Acrocomia aculeata) for biodiesel production. Fuel, v. 165, p. 360-366, 2016. https://doi.org/10.1016/j.fuel.2015.10.068

Teixeira, D. A.; Motta, C. R.; Ribeiro, C. M. S.; Castro, A. M. A rapid enzyme-catalyzed pretreatment of the acidic oil of macauba (Acrocomia aculeata) for chemoenzymatic biodiesel production. Process Biochemistry, v. 53, p. 188-193, 2017. https://doi.org/10.1016/j.procbio.2016.12.011

Teixeira, V. L.; Carneiro, A. C. O.; Evaristo, A. B.; Faria, B. F. H.; Donato, D. B.; Magalhães, M. A. Potential of macauba epicarp (Acrocomia aculeata (Jacq.) Lodd. ex Martius) for briquettes production. Floresta, v. 48, n. 4, p. 563-572, 2018. https://doi.org/10.5380/rf.v48i4.57397

Trentini, C. P.; Santos, K. A.; Silva, E. A.; Garcia, V. A. S.; Cardozo-Filho, L.; Silva, C. Oil extraction from macauba pulp using compressed propane. The Journal of Supercritical Fluids, v. 126, p. 72-78, 2017. https://doi.org/10.1016/j.supflu.2017.02.018

Zhuang, X.; Liu, J.; Zhang, Q.; Wang, C.; Zhan, H.; Ma, L. A review on the utilization of industrial biowaste via hydrothermal carbonization. Renewable and Sustainable Energy Reviews, v 154, 111877, 2022. https://doi.org/10.1016/j.rser.2021.111877


 

ISSN 2359-1412