Revista Brasileira de Gestao Ambiental e Sustentabilidade (ISSN 2359-1412)
Bookmark this page

Home > Edições Anteriores > v. 11, n. 28 (2024) > Nascimento

 

Vol. 11, No 28, p. 809-819 - 31 ago. 2024

 

Condições de luz sob o rendimento de biocompostos funcionais primários nas espécies de microalgas Limnospira maxima e Chlorella vulgaris



Rosy Dayanne Fernandes Nascimento , Janaina da Silva Gomes , Fabiana Rodrigues de Arruda Câmara e Dárlio Inácio Alves Teixeira

Resumo
O uso de diferentes fontes de luz tem sido uma estratégia eficiente no aumento da produção e no acúmulo de biomoléculas microalgal. O objetivo desta pesquisa foi analisar o efeito da exposição a lâmpadas brancas LED e fluorescente no rendimento de biocompostos primários das espécies de microalgas Limnospira maxima e Chlorella vulgaris. As espécies foram cultivadas em bombonas de 4 L sob fotoperíodo 12 h:12 h e controle de pH, salinidade e temperatura. Foram avaliados durante o período experimental a densidade óptica, absorbância, peso seco e contagem de célula. Para quantificação de proteínas, lipídios e carboidratos totais foram utilizadas metodologias específicas, de acordo com a literatura. Os resultados mostraram, através do número de células, que os cultivos expostos à luz LED branca apresentou maior acúmulo de biomassa para ambas as espécies. O teor de proteínas foi significativamente maior na luz LED para Limnospira maxima (45,13 ± 2,232), comparado com Chlorella vulgaris o maior percentual foi na luz fluorescente (19,97 ± 0,6411). Não houve diferença significativa entre os teores de carboidratos em ambas as espécies. Os teores de lipídios da Limnospira maxima foram significativamente maiores na luz LED branca (17,77 ± 1,254) e Chlorella vulgaris apresentou maior rendimento na luz fluorescente (4,10 ± 1,391). Portanto, a luz LED branca é a mais adequada para produção de biomassa, proteínas e lipídios em Limnospira maxima e a Chlorella vulgaris, exposta à luz fluorescente, apresentou melhor e maior adaptação e rendimento microalgal.


Palavras-chave
Microalgas; LED; Luz fluorescente; Biomoléculas; Intensidade luminosa.

Abstract
Light conditions under the yield of primary functional biocompounds in the microalgae species Limnospira maxima and Chlorella vulgaris. The use of different light intensities has been an efficient strategy in increasing the production and accumulation of microalgal biomolecules. The objective of this paper was to analyze the effect of the manipulation of light intensities on the production of crops under the yield of primary functional biocompounds of the species of microalgae Limnospira maxima and Chlorella vulgaris. The strains of the crops were produced in the laboratory under the following conditions: photoperiod, pH, aesthetion, optical density, absorbance, salinity, dry weight and cell count. For quantification of proteins, lipids and total carbohydrates were followed according to the literature. The results showed that the average number of cells of the cultures exposed in the white LED light showed better and higher biomass accumulation for both species. For carbohydrates, Chlorella vulgaris (26.74 ± 4.64) and Limnospira maxima (22.84 ± 11.07) presented statistically equal values between treatments. In proteins, the best result was in white LED light in the Limnospira maxima (45.13 ± 2.232), presenting significant difference. The lipid contents of Limnospira maxima were significantly higher in white LED light (17.77 ± 1.254) and Chlorella vulgaris showed higher yield in fluorescent light (4.10 ± 1.391). Given this, we highlight, that white LED light is the main color for the cultivation and maintenance of Cyanobacteria and microalgae.


Keywords
Microalgae; LED light; Fluorescent light; Biomolecules; Luminous intensity.

DOI
10.21438/rbgas(2024)112819


Texto completo

 Baixar este arquivo PDF

 


Referências
Aburai, N.; Kazama, H.; Tsuruoka, A.; Goto, M.; Abe, K. Development of a whole-cell-based screening method for a carotenoid assay using aerial microalgae. Journal of Biotechnology, v. 268, p. 6-11, 2018. https://doi.org/10.1016/j.jbiotec.2017.12.025

Andrade, D. S.; Colozzi Filho, A. (Eds.). Microalgas de águas continentais: potencialidades e desafios do cultivo. Londrina: IAPAR, 2014.

Atta, M.; Idris, A.; Bukhari, A.; Wahidin, S. Intensity of blue LED light: A potential stimulus for biomass and lipid content in freshwater microalgae Chlorella vulgaris. Bioresource Technology, v. 148, p. 373-378, 2013. https://doi.org/10.1016/j.biortech.2013.08.162

Bligh, E. G.; Dyer, W. K. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, v. 37, n. 8, p. 911-917, 1959. https://doi.org/10.1139/o59-099

Breda, M. J. G. Performance of Messastrum gracile (Chlorophyceae) submitted to different light cycles in commercial and alternative culture media. São Paulo: Universidade Estadual Paulista, 2022. (Trabalho de conclusão de curso).

Corzo Piñeros, R. J.; Manrique Ruíz, I. G.; Sandoval Herrera, J. A.; Rubio Fernández, D. Evaluación de carotenoides y lípidos en la microalga Scenedesmus dimorphus a escala laboratorio. Revista Mutis, v. 9, n. 1, p. 20-28, 2019. https://doi.org/10.21789/22561498.1471

Dubois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, v. 28, n. 3, p. 350-356, 1956. https://doi.org/10.1021/ac60111a017

George, B.; Pancha, I.; Desai, C.; Chokshi, K.; Paliwal, C.; Ghosh, T.; Mishra, S. Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus: A potential strain for bio-fuel production. Bioresource Technology, v. 171, p. 367-374, 2014. https://doi.org/10.1016/j.biortech.2014.08.086

Grossmann, L.; Hinrichs, J.; Weiss, J. Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Critical Reviews in Food Science and Nutrition, v. 60, n. 17, p. 2961-2989, 2019. https://doi.org/10.1080/10408398.2019.1672137

Juneja, A.; Ceballos, R. M.; Murthy, G. S. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review. Energies, v. 6, n. 9, p. 4607-4638, 2013. https://doi.org/10.3390/EN6094607

Keeling, P. J. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annual Review of Plant Biology, v. 64, n. 1, p. 583-607, 2013. https://doi.org/10.1146/annurev-arplant-050312-120144

Lima, A. E. V. Efeito da luz de LED branca, vermelha, azul e verde em parâmetros da fisiologia da cianobactéria Aphanocapsa holsatica: taxa de crescimento, produção de biomoléculas e biofixação do CO2. São Carlos: Universidade Federal de São Carlos, 2022. (Dissertação de mestrado).

Lowry, O. H.; Rosebrough, N. J.; Farr, A. L; Randall, R. J. Protein measurement with the Folin-Phenol reagent. The Journal of Biological Chemestry, v. 193, n. 1, p. 265-276, 1951.

Minhas, A. K.; Hodgson, P.; Barrow, C. J.; Adholeya, A. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Frontiers in Microbiology, v. 7, article 546, 2016. https://doi.org/10.3389/fmicb.2016.00546

Mutanda, T.; Naidoo, D.; Bwapwa, J. K.; Anadraj, A. Biotechnological applications of microalgal oleaginous compounds: Current trends on microalgal bioprocessing of products. Frontiers in Energy Research, v. 8, 29, 2020. https://doi.org/10.3389/fenrg.2020.598803

Novoveská, L.; Ross, M. E.; Stanley, M. S.; Pradellles, R.; Wasiolek, V.; Sassi, J.-F. Microalgal carotenoids: A review of production, current markets, regulations, and future direction. Marine Drugs, v. 17, n. 11, 640, 2019. https://doi.org/10.3390/md17110640

Ramanna, L.; Rawat, I.; Bux, F. Light enhancement strategies improve microalgal biomass productivity. Renewable and Sustainable Energy Reviews, v. 80, p. 765-773, 2017. https://doi.org/10.1016/j.rser.2017.05.202

Rendón, S, M.; Roldan, G. J. C.; Voroney, R. P. Effect of carbon dioxide concentration on the growth response of Chlorella vulgaris under four different LED illumination. International Journal of Biotechnology for Wellness Industries, v. 2, p. 125-311, 2013. https://doi.org/10.6000/1927-3037.2013

Richmond, A.; Hu, Q. Handbook of microalgal culture: Applied phycology and biotechnology. 2. ed. Oxford: Wiley Blackwell Publishing, 2013.

Rippka, R.; Deruelles, J.; Waterbury, J. W.; Herdman, M.; Stanier, R. G. Genetic assignments, strain histories and properties of pure cultures of Cyanobacteria. Journal of General Microbiology, v. 111, p. 1-61, 1979. https://doi.org/10.1099/00221287-111-1-1

Schulze, P. S. C.; Barreira, L. A.; Pereira, H. G. C.; Perales, J. A.; Varela, J. C. S. Light emitting diodes (LEDs) applied to microalgal production. Trends in Biotechnology, v. 32, n. 8, p. 442-430, 2014. https://doi.org/10.1016/j.tibtech.2014.06.001

Sipaúba-Tavares, L. H.; Fernandes, J. B. K.; Melo-Santos, G. L.; Scardoeli-Truzzi, B. Microalgae Ankistrodesmus gracilis as feed ingredient for ornamental fish Xiphophorus maculatus. International Aquatic Research, v. 1, n. 2, p. 125-134, 2019. https://doi.org/10.1007/s40071-019-0223-z

Souza, L. Caracterização morfofisiológica, produção de lipídios e carotenóides em diferentes condições de cultivo de duas microalgas com potencial biotecnológico. Florianópolis: Universidade Federal de Santa Catarina, 2016. (Tese de doutorado).

Urban, L.; Charles, F.; Miranda, M. R. A.; Aarrouf, J. Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest. Plant Physiology and Biochemistry, v. 105, p. 1-11, 2016. https://doi.org/10.1016/j.plaphy.2016.04.004

Xie, Y.; Ho, S.-H.; Chen, C.-N. N.; Chen, C.-N.; Ng, I. S.; Jing, K.-J.; Chang, J.S.; Lu, Y. Phototrophic cultivation of a thermo-tolerant Desmodesmus sp. for lutein production: Effects of nitrate concentration, light intensity and fed-batch operation. Bioresource Technology, v. 144, p. 435-444, 2013. https://doi.org/10.1016/j.biortech.2013.06.064

Yan, R.; Zhu, D.; Zhang, Z.; Chu, J. Carbon metabolism and energy conversion of Synechococcus sp. PCC7942 under mixotrophic conditions: Comparison with photoautotrophic condition. Journal of Applied Phycology, v. 24, p. 657-668, 2011. https://doi.org/10.1007/s10811-011-9683-2

Zhao, X.; Ma, R.; Liu, X.; Ho, S.; Xie, Y.; Chen, J. Strategies related to light quality and temperature to improve lutein production of marine microalga Chlamydomonas sp. Bioprocess and Biosystems Engineering, v. 42, p. 435-443, 2018. https://doi.org/10.1007/s00449-018-2047-4


 

ISSN 2359-1412