Revista Brasileira de Gestao Ambiental e Sustentabilidade (ISSN 2359-1412)
Bookmark this page

Home > Edições Anteriores > v. 11, n. 27 (2024) > Mello

 

Vol. 11, No 27, p. 277-304 - 30 abr. 2024

 

Fitorremediação em águas residuárias em estação de tratamento de esgoto e o aproveitamento de macrófita aquática para produção de biogás



Sergio Costa de Mello , Maria Cristina Crispim , Flávia Martins Franco de Oliveira , Glória Cristina Cornélio do Nascimento , Danielle Machado Vieira e Randolpho Sávio de Araújo Marinho

Resumo
As estações de tratamento de esgoto que usam o sistema australiano não removem eficazmente os nutrientes do efluente em tratamento. Isso permite que os corpos hídricos receptores destes equipamentos recebam altas cargas tróficas, tornando-se eutrofizados, com a biodiversidade ameaçada e trazendo riscos para a saúde da população que necessite fazer uso destes recursos hídricos. O presente trabalho avaliou o potencial das macrófitas aquáticas na depleção de nutrientes presentes no esgoto em tratamento. A fitorremediação foi testada em mesocosmo, usando o aguapé (Eichornnia crassipes), a alface d'água (Pistia stratiotes), a lombrigueira (Ludwigia helminthorrhiza) e a samambaia d'água (Salvinia auriculata). Cada espécie (em quadruplicata) e o grupo Controle (apenas o efluente) foram depositados em 82 litros do esgoto retirado da lagoa facultativa da ETE Mangabeira em João Pessoa, Paraíba. As variáveis amônia, nitrato, nitrito, ortofosfato, fósforo total, pH, temperatura, oxigênio dissolvido e clorofila-a foram analisadas. A samambaia d'água não sobreviveu, portanto seu potencial fitorremediador não pode ser investigado, mas já revelando que esta espécie não pode ser usada como fitorremediadora em ambientes muito eutrofizados. Os resultados foram: todos os tratamentos contribuíram com a remoção de amônia em mais de 80%; todos removeram também nitrato e ortofosfato, enquanto o nitrito foi removido em 100% dos tratamentos no último dia, incluindo no controle; o aguapé e o controle contribuíram para a remoção de fósforo total, enquanto que a lombrigueira e a alface d'água liberaram; o tratamento com aguapé foi o único a manter o pH próximo da neutralidade, os demais apresentaram elevada alcalinidade; o oxigênio dissolvido foi superior a 6 mg.L-1, enquanto a clorofila-a foi parcialmente removida em todos os tratamentos com as macrófitas. Os resultados obtidos com o experimento de fitorremediação permitiram selecionar o aguapé, como a espécie mais eficiente neste processo e por isso foi escolhida para uso na geração de biogás. Os resultados mostraram que o beneficiamento desta planta tem alto potencial para a produção de biocombustível renovável. Foram obtidos 659,28 L de biogás purificado, em 30 dias, a partir da digestão anaeróbia de 32,04 kg de biomassa de aguapé.


Palavras-chave
Macrófitas; Fitorremediação; Nutrientes; Esgoto; Biogás.

Abstract
Phytoremediation in wastewater in a sewage treatment plant - WWTP and the use of aquatic macrophyte for the production of biogas. Sewage treatment plants using the Australian system do not effectively remove the nutrients from the effluent under treatment. This allows the water bodies that receive these equipment to receive high trophic loads, becoming eutrophic, with biodiversity threatened and bringing health risks to the population that needs to make use of these water resources. The present work evaluated the potential of aquatic macrophytes in the depletion of nutrients present in the sewage under treatment. The phytoremediation was tested in mesocosm using the water hyacinth (Eichornnia crassipes), water lettuce (Pistia stratiotes), worm-shaped root (Ludwigia helminthorrhiza), and giant salvinia (Salvinia auriculata). Each species (in quadruplicate) and control group (effluent only) were deposited in 82 liters of the sewage contained in the facultative pond of WWTP Mangabeira in João Pessoa, Paraíba, Brazil. The variables ammonia, nitrate, nitrite, orthophosphate, total phosphorus, pH, temperature, dissolved oxygen and chlorophyll-a were analyzed. The giant salvinia has not survived, so its potential phytoremediation cannot be investigated. The results were: all the treatments contributed with the removal of ammonia in more than 80%; all deposited nitrate and orthophosphate while the nitrite was removed in 100% of the treatments; the water hyacinth and the Control contributed to the removal of total phosphorus, whereas the worm-shaped root and the water lettuce released; the treatment with water hyacinth was the only one to keep the pH close to neutrality, the others presented high alkalinity; dissolved oxygen was greater than 6 mg.L-1, while chlorophyll-a was removed in more than 49% of treatments. The results obtained with the phytoremediation experiment allowed the selection of the water hyacinth for use in the generation of biogas, showing that the beneficiation of this plant has high potential for the production of renewable biofuel. Thus, 659.28 L of purified biogas was obtained in 30 days from the anaerobic digestion of 32.04 kg of water hyacinth biomass.


Keywords
Macrophytes; Phytoremediation; Nutrients; Sewage; Biogas.

DOI
10.21438/rbgas(2024)112724

Texto completo

 Baixar este arquivo PDF

 


Referências
Al Iman, F. I.; Khan, M. Z. H.; Sarkar, M. A. R.; Ali, S. M. Development of biogas processing from cow dung, poultry waste, and water hyacinth. International Journal of Natural and Applied Science, v. 2, n. 1, p. 13-17, 2013.

Alemu, K.; Assefa, B.; Kifle, D.; Kloos, H. Nitrogen and phosphorous removal from municipal wastewater using high rate algae ponds. INAE Letters, v. 3, n. 1, p. 21-32, 2018. https://doi.org/10.1007/s41403-018-0036-1

Almoustapha, O.; Millogo-Rasolodimby, J. Production de biogaz et de compost à partir de Eichhornia crassipes (Mart) Solms-Laub (Pontederiaceae) pour un développement durable en Afrique sahélienne. Vertigo, v. 7, n. 2, 2006. https://doi.org/10.4000/vertigo.2221

Alves, I. R. F. S. Avaliação da codigestão na produção de biogás. Rio de Janeiro: UFRJ, 2016. (Tese de doutorado).

ANA - Agência Nacional de Águas. Atlas esgotos: despoluição de bacias hidrográficas. Brasília: ANA, 2017.

ANA - Agência Nacional de Águas. Mapa interativo. 2018. Disponível em: <https://www3.snirh.gov.br/portal/snirh/snirh-1/atlas-esgotos/mapa-interativo>. Acesso em: 22 ago. 2022.

APHA - American Public Health Association. Standard methods for the examination of water and wastewater. 21. ed. Washington: American Public Health Association, 2005.

Aremu, A. S.; Ojoawo, S. O.; Alade, G. A. Water hyacinth (Eichhornia crassipes) culture in sewage: Nutrient removal and potential applications of bye-products. Transnational Journal of Science and Technology, v. 2, n. 7, p. 103-114, 2012.

Assunção, F. A. L. D.; Sperling, M. V. Importance of the ammonia volatilization rates in shallow maturation ponds treating UASB reactor effluent. Water Science and Technology, v. 66, n. 6, p. 1239-1246, 2012. https://doi.org/10.2166/wst.2012.303

Barco, A.; Borin, M. Treatment performance and macrophytes growth in a restored hybrid constructed wetland for municipal wastewater treatment. Ecological Engineering, v. 107, 160-171, 2017. https://doi.org/10.1016/j.ecoleng.2017.07.004

Bastos, R. K. X.; Rios, E. N.; Sánchez, I. A. Further contributions to the understanding of nitrogen removal in waste stabilization ponds. Water Science and Technology, v. 77, n. 11, p. 2635-2641, 2018. https://doi.org/10.2166/wst.2018.218

Brasil. Lei nº 10.973, de 02 de dezembro de 2014. Dispõe sobre incentivos à inovação e à pesquisa científica e tecnológica no ambiente produtivo e dá outras providências. Disponível em: <https://www.planalto.gov.br/ccivil_03/_ato2004-2006/2004/lei/l10.973.htm>. Acesso em: 22 ago. 2022.

Chernicharo, C. A. L.; Lier, J. B. V.; Noyola, A.; Ribeiro, T. B. Anaerobic sewage treatment: State of the art, constraints and challenges. Reviews in Environmental Science and Bio/Technology, v. 14, n. 4, p. 649-679, 2015. https://doi.org/10.1007/s11157-015-9377-3

CETESB - Companhia Ambiental do Estado de São Paulo. Determinação de clorofila a, e feofitina a: método espectrofotométrico. São Paulo: CETESB, 2014.

Deganutti, R.; Palhaci, M. C. J. P.; Rossi, M. A.; Tavares, R.; Santos, C. Biodigestores rurais: modelo indiano, chinês e batelada. Anais do 4º Encontro de Energia no Meio Rural, Campinas, 2002.

Domingues, F. D.; Starling F. L. R. M.; Nova C. C.; Loureiro B. R.; Souza L. C. E.; Branco C. W. C. The control of floating macrophytes by grass carp in net cages: experiments in two tropical hydroelectric reservoirs. Aquaculture Research, v. 48, n. 7, p. 3356-3368, 2016. https://doi.org/10.1111/are.13163

Ehiri, R.; Ikelle, I.; Mgbabor, C.; Ogbuanu, C. Kinetics of biogas production from a mixture of water hyacinth (Eichornia crassipes) and fresh rumen residue. IOSR Journal of Applied Chemistry, v. 7, n. 7, p. 36-39, 2014. https://doi.org/10.9790/5736-07733639

Fernandes, H.; Antonio, R. V.; Costa, R. H. R. D. Investigation of full-scale step-fed SBR under low dissolved oxygen: Performance and microbial community response. Water Quality Research Journal, v. 51, n. 2, p. 141-152, 2016. https://doi.org/10.2166/wqrjc.2016.042

Fernandes, H.; Jungles, M. K.; Hoffmann, H.; Antonio, R. V.; Costa, R. H. Full-scale sequencing batch reactor (SBR) for domestic wastewater: Performance and diversity of microbial communities. Bioresource Technology, v. 132, p. 262-268, 2013. https://doi.org/10.1016/j.biortech.2013.01.027

Ferrentino, R.; Langone, M.; Andreottola, G. Temperature effects on the activity of denitrifying phosphate accumulating microorganisms and sulphate reducing bacteria in anaerobic side-stream reactor. Journal of Environment and Bio Research, v. 1, n. 1, p. 1-7, 2017.

Fries, J.; Getrost, H. Organic reagents for trace analysis. Darmstadt: E. Merck, 1977.

Gao, Y.; Yi, N.; Wang, Y.; Ma, T.; Zhou, Q.; Zhang, Z.; Yan, S. Effect of Eichhornia crassipes on production of N2 by denitrification in eutrophic water. Ecological Engineering, v, 68, p. 14-24, 2014. https://doi.org/10.1016/j.ecoleng.2014.01.002

Garcia-Rodríguez, A.; Matamoros, V.; Fontàs, C.; Salvadó, V. The ability of biologically based wastewater treatment systems to remove emerging organic contaminants: A review. Environmental Science and Pollution Research, v. 21, n. 20, p. 11708-11728, 2014. https://doi.org/10.1007/s11356-013-2448-5

Gette-Bouvarot, M.; Mermillod-Blondin, F.; Lemoine, D.; Delolme, C.; Danjean, M.; Etienne, L.; Volatier, L. The potential control of benthic biofilm growth by macrophytes: A mesocosm approach. Ecological Engineering, v. 75, p. 178-186, 2015. https://doi.org/10.1016/j.ecoleng.2014.12.001

Güereña, D.; Neufeldt, H.; Berazneva, J.; Duby, S. Water hyacinth control in Lake Victoria: Transforming an ecological catastrophe into economic, social, and environmental benefits. Sustainable Production and Consumption, v. 3, p. 59-69, 2015. https://doi.org/10.1016/j.spc.2015.06.003

Hartshorn, N.; Marimon, Z.; Xuan, Z.; Cormier, J.; Chang, N.-B.; Wanielista, M. Complex interactions among nutrients, chlorophyll-a, and microcystins in three stormwater wet detention basins with floating treatment wetlands. Chemosphere, v. 144, p. 408-419, 2016. https://doi.org/10.1016/j.chemosphere.2015.08.023

Ho, L.; Pham, D.; Echelpoel, W. V.; Muchene, L.; Shkedy, Z.; Alvarado, A.; Espinoza-Palacios, J.; Arevalo-Durazno, M.; Thas, O.; Goethals, P. A closer look on spatiotemporal variations of dissolved oxygen in waste stabilization ponds using mixed models. Water, v. 10, n. 2, 201, 2018. https://doi.org/10.3390/w10020201

Kunatsa, T.; Madiye, L.; Chikuku, T.; Shonhiwa, C.; Musademba, D. Feasibility study of biogas production from water hyacinth. International Journal of Engineering and Technology, v. 3, n. 2, p. 119-128, 2013.

Li, C.; Zhang, J.; Liang, S.; Ngo, H. H.; Guo, W.; Zhang, Y.; Zou, Y. Nitrous oxide generation in denitrifying phosphorus removal process: Main causes and control measures. Environmental Science and Pollution Research, v. 20, n. 8, p. 5353-5360, 2013. https://doi.org/10.1007/s11356-013-1530-3

Lorenzen, C. J. Determination of chlorophyll and pheo-pigments: Spectrophotometric equations. Limnology and Oceanography, v. 12, n. 2, p. 343-346, 1967. https://doi.org/ 10.4319/lo.1967.12.2.0343

Mayo, A. W.; Abbas, M. Removal mechanisms of nitrogen in waste stabilization ponds. Physics and Chemistry of the Earth, Parts A/B/C, v. 72, p. 77-82, 2014. https://doi.org/10.1016/j.pce.2014.09.011

Mendonça, L. C.; Mendonça, S. R. Sistemas sustentáveis de esgotos: orientações técnicas para projeto e dimensionamento de redes coletoras, emissários, canais, estações elevatórias, tratamento e reúso na agricultura. 2. ed. São Paulo: Blücher, 2017.

Mittal, S.; Ahlgren, E. O.; Shukla, P. Barriers to biogas dissemination in India: A review. Energy Policy, v. 112, p. 361-370, 2018. https://doi.org/10.1016/j.enpol.2017.10.027

Nivetha, C.; Subraja, S.; Sowmya, R.; Induja, N. M. Water lettuce for removal of nitrogen and phosphate from sewage. Journal of Mechanical and Civil Engineering, v. 13, n. 2, p. 98-101, 2016.

Njogu, P.; Kinyua, R.; Muthoni, P.; Nemoto, Y. Biogas production using water hyacinth (Eicchornia crassipes) for electricity generation in Kenya. Energy and Power Engineering, v. 7, n. 5, p. 209-216, 2015. https://doi.org/10.4236/epe.2015.75021

Noyola, A.; Padilla-Rivera, A.; Morgan-Sagastume, J. M.; Güereca, L. P.; Hernández-Padilla, F. Typology of municipal wastewater treatment technologies in Latin America. CLEAN - Soil, Air, Water, v. 40, n. 9, p. 926-932, 2012. https://doi.org/10.1002/clen.201100707

Olguín, E. J.; Sánchez-Galván, G.; Melo, F. J.; Hernández, V. J.; González-Portela, R. E. Long-term assessment at field scale of floating treatment wetlands for improvement of water quality and provision of ecosystem services in a eutrophic urban pond. Science of the Total Environment, v. 584/585, p. 561-571, 2017. https://doi.org/10.1016/j.scitotenv.2017.01.072

Oliveira, M. S. R. Avaliação da comunidade fitoplanctônica da lagoa facultativa do módulo III da estação de tratamento de esgotos Mangabeira (João Pessoa-PB). São Carlos: Universidade de São Paulo, 2010. (Dissertação de mestrado).

Park, T.; Ampunan, V.; Lee, S.; Chung, E. Chemical behavior of different species of phosphorus in coagulation. Chemosphere, v. 144, p. 2264-2269, 2016. https://doi.org/10.1016/j.chemosphere.2015.10.131

Park, J. B.; Craggs, R. J.; Tanner, C. C. Eco-friendly and low-cost Enhanced Pond and Wetland (EPW) system for the treatment of secondary wastewater effluent. Ecological Engineering, v. 120, p. 170-179, 2018. https://doi.org/10.1016/j.ecoleng.2018.05.029

Peng, L.; Dai, H.; Wu, Y.; Peng, Y.; Lu, X. A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere, v. 197, p. 768-781, 2018. >https://doi.org/10.1016/j.chemosphere.2018.01.098

Pérez, J. M. Biofilme e macrófitas como ferramenta de biorremediação em ecossistemas aquáticos e tratamento de esgotos. João Pessoa: UFPB, 2015. (Dissertação de mestrado).

Pizzuti, L.; Martins, C.; Lacava, P. Laminar burning velocity and flammability limits in biogas: A literature review. Renewable and Sustainable Energy Reviews, v. 62, p. 856-865, 2016. https://doi.org/10.1016/j.rser.2016.05.011

Pompêo, M. Monitoramento e manejo de macrófitas aquáticas em reservatórios tropicais brasileiros. 1. ed. São Paulo: Instituto de Biociências/USP, 2017. https://doi.org/10.11606/9788585658670

PROBIOGÁS - Parceria Brasil/Alemanha. Guia técnico de aproveitamento energético de biogás em estações de tratamento de esgoto. 2015. Disponível em: <https://www.giz.de/en/downloads/probiogas-guia-etes.pdf>. Acesso em: 22 ago. 2022.

Qin, H.; Zhang, Z.; Liu, M.; Liu, H.; Wang, Y.; Wen, X.; Zhang, Y.; Yan, S. Site test of phytoremediation of an open pond contaminated with domestic sewage using water hyacinth and water lettuce. Ecological Engineering, v. 95, p. 753-762, 2016. https://doi.org/10.1016/j.ecoleng.2016.07.022

Qin, H.; Zhang, Z.; Liu, M.; Wang, Y.; Wen, X.; Yan, S.; Zhang, Y.; Liu, H. Efficient assimilation of cyanobacterial nitrogen by water hyacinth. Bioresource Technology, v. 241, p. 1197-1200, 2017. https://doi.org/10.1016/j.biortech.2017.06.104

Rehman, K.; Imran, A.; Amin, I.; Afzal, M. Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. Journal of Hazardous Materials, v. 349, p. 242-251, 2018. https://doi.org/10.1016/j.jhazmat.2018.02.013

Rezania, S.; Ponraj, M.; Talaiekhozani, A.; Mohamad, S. E.; Din, M. F. M.; Taib, S. M.; Sabbagh, F.; Sairan, F. M. Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. Journal of Environmental Management, v. 163, p. 125-133, 2015. https://doi.org/10.1016/j.jenvman.2015.08.018

Ribeiro, R. A. M. Tabela periódica: uma investigação de como a experimentação, a história da ciência e o pensamento por conceitos contribuem no processo ensino-aprendizagem. Brasília: Universidade de Brasília, 2013. (Dissertação de mestrado).

Rochette, P.; Angers, D. A.; Chantigny, M. H.; Gasser, M.-O.; MacDonald, J. D.; Pelster, D. E.; Bertrand, N. Ammonia volatilization and nitrogen retention: How deep to incorporate urea? Journal of Environment Quality, v. 42, n. 6, p. 1635-1642, 2013. https://doi.org/10.2134/jeq2013.05.0192

Rodrigues, V. A. J. Influência do sedimento no processo de remoção de nitrogênio por nitrificação/desnitrificação em lagoas de polimento. Belo Horizonte: UFMG, 2016. (Tese de doutorado).

Romero-Oliva, C. S.; Contardo-Jara, V.; Block, T.; Pflugmacher, S. Accumulation of microcystin congeners in different aquatic plants and crops: A case study from Lake Amatitlán, Guatemala. Ecotoxicology and Environmental Safety, v. 102, p. 121-128, 2014. https://doi.org/10.1016/j.ecoenv.2014.01.031

Rommens, W.; Maes, J.; Dekeza, N.; Inghelbrecht, P.; Nhiwatiwa, T.; Holsters, E.; Ollevier, F.; Marshall, B.; Brendonck, L. The impact of water hyacinth (Eichhornia crassipes) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). I. Water quality. Archiv für Hydrobiologie, v. 158, n. 3, p. 373-388, 2003. https://doi.org/10.1127/0003-9136/2003/0158-0373

Sampaio, J. A. A.; Crispim, M. C.; Silva, G. R. Efeito da biorremediação na saúde e crescimento do camarão Litopenaeus vannamei Boone, 1931, em berçários de carcinicultura. Revista Brasileira de Gestão Ambiental e Sustentabilidade, v. 11, n. 27, p. 277-304, 2024. https://doi.org/10.21438/rbgas(2024)112724

Sharma, R.; Sharma, K.; Singh, N.; Kumar, A. Rhizosphere biology of aquatic microbes in order to access their bioremediation potential along with different aquatic macrophytes. Recent Research in Science and Technology, v. 5, n. 1, p. 29-32, 2013.

Shen, Y.; Linville, J. L.; Urgun-Demirtas, M.; Mintz, M. M.; Snyder, S. W. An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: Challenges and opportunities towards energy-neutral WWTPs. Renewable and Sustainable Energy Reviews, v. 50, p. 346-362, 2015. https://doi.org/10.1016/j.rser.2015.04.129

Silva, L. M. T.; Braga, R. B. Parque Natural Municipal Rio Cuiá, em João Pessoa, PB: subsídios geográficos para o plano de manejo. Okara: Geografia em Debate, v. 11, n. 1, p. 92-104, 2017.

Sousa, C. E. Avaliação de sistemas biorremediadores em efluentes da lagoa facultativa da Estação de Tratamentos de Esgotos em Mangabeira, João Pessoa/PB. João Pessoa: UFPB, 2015. (Dissertação de mestrado).

Sricoth, T.; Meeinkuirt, W.; Pichtel, J.; Taeprayoon, P.; Saengwilai, P. Synergistic phytoremediation of wastewater by two aquatic plants (Typha angustifolia and Eichhornia crassipes) and potential as biomass fuel. Environmental Science and Pollution Research, v. 25, v. 6, p. 5344-5358, 2017. https://doi.org/10.1007/s11356-017-0813-5

Sudhakar, K.; Ananthakrishnan, R.; Goyal, A. Biogas production from a mixture of water hyacinth, water chestnut and cow dung. International Journal of Science, Engineering and Technology Research, v. 2, n. 1, p. 35-37, 2013.

Tao, Q.; Luo, J.; Zhou, J.; Zhou, S.; Liu, G.; Zhang, R. Effect of dissolved oxygen on nitrogen and phosphorus removal and electricity production in microbial fuel cell. Bioresource Technology, v. 164, p. 402-407, 2014. https://doi.org/10.1016/j.biortech.2014.05.002

Tel-Or, E.; Forni, C. Phytoremediation of hazardous toxic metals and organics by photosynthetic aquatic systems. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, v. 145, n. 1, p. 224-235, 2011. https://doi.org/10.1080/11263504.2010.509944

Trein, C. M.; Pelissari, C.; Hoffmann, H.; Platzer, C. J.; Sezerino, P. H. Tratamento descentralizado de esgotos de empreendimentos comercial e residencial empregando a ecotecnologia dos wetlands construídos. Ambiente Construído, v. 15, n. 4, p. 351-367, 2015. https://doi.org/10.1590/s1678-86212015000400055

UFPB - Universidade Federal da Paraíba. Resolução CONSUNI nº 18/2017. Aprova o Regulamento da Política de Propriedade Intelectual e Inovação na Universidade Federal da Paraíba e dá outras providências. Disponível em: <https://sig-arq.ufpb.br/arquivos/2018114140c4fa674168ec4479092c0b/Runi18_2017.pdf>. Acesso em: 22 ago. 2022.

Valero, M. A. C.; Mara, D. D. Ammonia volatilisation in waste stabilisation ponds: A cascade of misinterpretations? Water Science and Technology, v. 61, n. 3, p. 555-561, 2010. https://doi.org/10.2166/wst.2010.856

Valero, M. A. C.; Mara, D. Nitrogen removal in maturation ponds: Tracer experiments with 15N-labelled ammonia. Water Science and Technology, v. 55, n. 11, p. 81-85, 2007a. https://doi.org/10.2166/wst.2007.347

Valero, M. A. C.; Mara, D. Nitrogen removal via ammonia volatilization in maturation ponds. Water Science and Technology, v. 55, n. 11, p. 87-92, 2007b. https://doi.org/10.2166/wst.2007.349

Veloso, M. E. C. Potencialidade de impacto ambiental por nitrato, doses de N e flutuações do lençol freático para a cultura do milho sob sistema de drenagem. São Paulo: Universidade de São Paulo, 2006. (Tese de doutorado).

Victor, K. K.; Séka, Y.; Norbert, K. K.; Sanogo, T. A.; Celestin, A. B. Phytoremediation of wastewater toxicity using water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes). International Journal of Phytoremediation, v. 18, n. 10, p. 949-955, 2016. https://doi.org/10.1080/15226514.2016.1183567

Wang, C.-Y.; Sample, D. J.; Day, S. D.; Grizzard, T. J. Floating treatment wetland nutrient removal through vegetation harvest and observations from a field study. Ecological Engineering, v. 78, p. 15-26, 2015. https://doi.org/10.1016/j.ecoleng.2014.05.018

Wang, Z.; Calderon, M. M. Environmental and economic analysis of application of water hyacinth for eutrophic water treatment coupled with biogas production. Journal of Environmental Management, v. 110, p. 246-253, 2012. https://doi.org/10.1016/j.jenvman.2012.06.031

Wang, Z.; Yan, S. H. Direct and strong influence of water hyacinth on aquatic communities in natural waters. In: Yan, S.; Guo, J. Y. (Eds.). Water hyacinth: Environmental challenges, management and utilization. 1. ed. Boca Raton: CRC Press, 2017. p. 44-65.

West, M.; Fenner, N.; Gough, R.; Freeman, C. Evaluation of algal bloom mitigation and nutrient removal in floating constructed wetlands with different macrophyte species. Ecological Engineering, v. 108, p. 581-588, 2017. https://doi.org/10.1016/j.ecoleng.2017.07.033

Woese, C. R.; Fox, G. E. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proceedings of the National Academy of Sciences, v. 74, n. 11, p. 5088-5090, 1977. https://doi.org/10.1073/pnas.74.11.5088

Wolff, G.; Pereira, G.; Castro, E.; Louzada, J.; Coelho, F. The use of Salvinia auriculata as a bioindicator in aquatic ecosystems: Biomass and structure dependent on the cadmium concentration. Brazilian Journal of Biology, v. 72, n. 1, p. 71-77, 2012. https://doi.org/10.1590/s1519-69842012000100009

Yan, S.-H.; Song, W.; Guo, J.-Y. Advances in management and utilization of invasive water hyacinth (Eichhornia crassipes) in aquatic ecosystems: A review. Critical Reviews in Biotechnology, v. 37, n. 2, p. 218-228, 2016. https://doi.org/10.3109/07388551.2015.1132406

Ye, Y.; Ngo, H. H.; Guo, W.; Liu, Y.; Chang, S. W.; Nguyen, D. D.; Liang, H.; Wang, J. A critical review on ammonium recovery from wastewater for sustainable wastewater management. Bioresource Technology, v. 268, p. 749-758, 2018. https://doi.org/10.1016/j.biortech.2018.07.111

Yi, N.; Gao, Y.; Long, X.-H.; Zhang, Z.-Y.; Guo, J.-Y.; Shao, H.-B., Zhang, Z.-H.; Yan, S.-H. Eichhornia crassipes cleans wetlands by enhancing the nitrogen removal and modulating denitrifying bacteria community. CLEAN - Soil, Air, Water, v. 42, n. 5, p. 664-673, 2013. ~https://doi.org/10.1002/clen.201300211

Yi, N.; Gao, Y.; Zhang, Z.; Shao, H.; Yan, S. Water properties influencing the abundance and diversity of denitrifiers on Eichhornia crassipes roots: A comparative study from different effluents around Dianchi Lake, China. International Journal of Genomics, v. 2015, Article ID 142197, 2015. https://doi.org/10.1155/2015/142197

Young, P.; Taylor, M.; Fallowfield, H. J. Mini-review: High rate algal ponds, flexible systems for sustainable wastewater treatment. World Journal of Microbiology and Biotechnology, v. 33, article number 117, 2017. https://doi.org/10.1007/s11274-017-2282-x

Zhang, D. Q.; Jinadasa, K.; Gersberg, R. M.; Liu, Y.; Ng, W. J.; Tan, S. K. Application of constructed wetlands for wastewater treatment in developing countries: A review of recent developments (2000-2013). Journal of Environmental Management, v. 141, p. 116-131, 2014. https://doi.org/10.1016/j.jenvman.2014.03.015

Zhou, Q.; Han, S.; Yan, S.; Guo, J.; Song, W.; Liu, G. Impacts of Eichhornia crassipes (Mart.) Solms stress on the physiological characteristics, microcystin production and release of Microcystis aeruginosa. Biochemical Systematics and Ecology, v. 55, p. 148-155, 2014. https://doi.org/10.1016/j.bse.2014.03.008

Zhu, X.; Chen, Y. Reduction of N2O and NO generation in anaerobic-aerobic (low dissolved oxygen) biological wastewater treatment process by using sludge alkaline fermentation liquid. Environmental Science & Technology, v. 45, n. 6, p. 2137-2143, 2011. https://doi.org/10.1021/es102900h


 

ISSN 2359-1412